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NOMENCLATURE

Distance between tractor tandem axles (in)
Distance between trailer tandem axles (in)
Tire slip angle (degrees)

Antilock effectiveness—Ilateral and
longitudinal components

Distance from tractor c.g. to front axle (in}

Distance from tractor c.g. to center of
rear suspension (in}

Distance from trailer c.g. to fifth
wheel (in)

Distance from trailer c.g. to center of
trailer suspension (in)

Distance from center of tractor rear suspension
to fifth wheel (in). (Fifth wheel located aft
of suspension is negative.)

Cornering stiffness of a tire (1b/deg)

Suffix representing differentiation twice with
respect to time (i.e., GAM-DDOT)

Average steer angle of front wheels (deg)

Longitudinal load transfer onto one side of
an axle (1b)

Lateral load transfer onto one side of an
axle {1b)

Suffix representing differentiation with respect
to time (i.e., GAMMAD@T, PSID@T, U-D@T, V-D@T)

Weighting factor dependent on the _
value of slip, which multiplies the tire side

force due to slip angle. F(S) vs. S is referred
to as the "slip roll-off table."

Static load on an axle (1b)
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FSX

FX

FY

FYF

Fi
GAMMA

GAM1

GAMZ

GAM3
GAM4
GVW1
GVW2
IQUIT

IR

ITZZ
IwW

IZ2
KEYANT
KEYTD

Attempted brake force on one side of an axle
(1b) (brake torque divided by tire rolling radius)

Longitudinal force generated by the tire or
tires on one side of an axle (1b)

Lateral force generated by the tire or tires
on one side of an axle (1b)

Lateral force generated by a tire, computed
using Fiala's tire model which assumes zero slip
(1b) (see Reference 7)

Dynamic load on one side of an axle (1b)

~Articulation angle of trailer with respect to

tractor (deg). If trailer swings clockwise with
respect to tractor looking down on the vehicle,
GAMMA is positive., (Note: GAM-DDPT is the
second derivative of GAMMA,)

Fraction of lateral load transfer of tractor
which occurs at front axle of tractor

Fraction of rear lateral load transfer of
tractor. Equal to 1.,0-GAMI

Tractor tandem axle load transfer coefficient
Trailer tandem axle load transfer coefficient
Gross vehicle weight of tractor (1b)
Gross vehicle weight of trailer (1b)

Maximum articulation angle allowed before
execution of program is stopped (deg)

Input device number for computer terminal. It
is set equal to 5 in main routine.

Trailer yaw moment of inertia (in-lb-secz)

Output device number for computer terminal. It
is set equal to 6 in main routine.

Tractor yaw moment of inertia (in-lb-secz)
Antilock key

Tandem axle/dual tire key
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LAT ACC  Acceleration of tractor along y-axis
(AX) (ft/sec?)

LONG ACC Acceleration of tractor along x-axis
(AY) (ft/sec?)

MUP Peak tire-road friction coefficient

MUS Locked-wheel tire-road friction coefficient

MU5 Fifth wheel friction coefficient

PSI Clockwise rotation of tractor (looking down on
vehicle) from its initial position (deg)

RADS - Equivalent radius of fifth wheel (in)

SIDESLIP Sideslip angle of c.g. of tractor (deg)

(B) [Equal to tan-1 (V-VEL/U-VEL}]

SP Assuming a three-point MU-slip curve, SP is the

slip at which the peak friction coefficient, MUP,
is obtained

TIMF User-entered simulation time after which program's
execution is terminated (sec)

TRAL Half lateral distance between centers of tire
' contact on tractor front axle (in)

TRA2Z Half lateral distance between centers of tire
contact on tractor rear axles (in)

TRA3 Half lateral distance between centers of tire
contact on trailer axles (in)

TURN RAD Radius of curvature of c.g. of tractor (ft)

U-VEL Velocity of c.g. of tractor along x-axis (ft/sec)

VEL User-entered initial velocity of tractor along
x-axis (mph)

V-VEL Velocity of c.g. of tractor along y-axis (ft/sec)

x-axis Body-fixed axis in tractor which intersects

c.g. and is positive forward

XH Reaction force on trailer at fifth wheel
g directed along the negative x-axis (1b)

y-axis Body-fixed axis in tractor which intersects
c.g. and is positive to the right, looking forward



YH

Z0
Z1
Z2

Reaction force on trailer at fifth wheel
directed along the negative y-axis (1b)

Height of fifth wheel above the ground (in)
Height of tractor c.g. above the ground (in)

Height of trailer c.g. above the ground (in)

vi



1., INTRODUCTION

Comprehensive computer programs for simulating the
response of commercial vehicles to steering and/or braking
inputs have been developed at HSRI under MVMA sponsorship
{1, 2}.% These programs were developed with the intent of
producing results that would be as accurate as is technically
and economically feasible. To this end, careful analyses
have been performed of (a) unsprung mass dynamics with or
without tandem axles, and (b) brake and antilock systems,
Furthermore, extensive provisions for representing measured
tire data were included in these simulations.

The developed computer programs require a large number
of input parameters to characterize the properties of the
simulated vehicle (e.g., geometry, mechanical characteristics
of components, inertias, tires, brakes, and brake actuating
systems). The outputs of these programs are lengthy, and
require careful analysis to yield meaningful conclusions.
Since the input/output (I/0) is so lengthy, these simulations
have been designed exclusively for batch operation.

During the course of development of these programs, it
has become apparent that there is a need for less complex
simulations which can be run interactively using minimal I/0.
Hence, the BRAKES2 simulation was developed to simulate the
straight line response of commercial vehicles to a step
brake input. This simulation is documented in an earlier
report [3]. The present document presents the TBS simulation.
This simulation contains a simplified vehicle model for
predicting the directional response of commercial vehicles to
braking and/or steering inputs. The simulation consists of
_two interactive computer programs—one for a straight truck
and the other for a tractor-trailer,

#Numbers in square brackets designate references listed in
Section 6.



The mathematical model for TBS was constructed using
the model developed by Leucht [4] as a starting point.
Additions and changes, particularly with respect to the tire
model, were made to produce the present simulation.

The next section (2.) discusses the assumptions and
features of the simplified model. Following in Section 3.,
the steps involved in running the computer program are
described. Section 4. contains sample results. A brief
discussion in Section 5. concerning the utility of this
simulation concludes the main body of this report. Finally,
a flow chart outlining the options available to the user in
running the computer program is included as an Appendix. *

*The listing and source code for the TBS computer program
may be obtained by contacting the authors of this report
at the Highway Safety Research Institute.



2. FEATURES OF THE SIMULATION

In developing the TBS simulation, a mathematical model
was formulated and programmed to describe the directional
dynamics of a tractor-trailer. A similar model was then
developed for a straight truck by simplifying the tractor-
trailer model. Hence, the following discussion treats the
tractor-trailer model only, since the truck model is a simple
derivative of the tractor-trailer model.

A schematic diagram for the tractor-trailer is shown
in Figure 1. The vehicle model consists of two rigid
bodies—one for the tractor and the other for the trailer.
The model has four degrees of freedom, namely, the longitudinal
velocity and the lateral velocity of the tractor, the yaw
rate of the tractor, and the articulation angle of the trailer
relative to the tractor. There are no roll or pitch degrees
of freedom. Load transfers, both longitudinal and lateral,
are computed quasi-statically.

In the computer program developed, the equations of
motion are integrated numerically using the HPCG numerical
integration subroutine, based on Hamming's Predictor-Corrector
method [5].

2.1 THE HITCH ("FIFTH WHEEL")

In this simulation the hitch is assumed to transmit a
yaw moment {(but not a roll or pitch moment) through the hitch
due to friction in it. The hitch is modeled as a circular
plate of radius RAD5 with a constant pressure distribution
equal to the static load divided by the area of the plate.
The friction coefficient of the hitch is designated as MUS.
(For a fifth wheel employing "steel on steel' MU5 is
approximately .05 [4].) To ignore the frictional coupling
of the hitch, MUS5 should be entered as 0, and nothing need
be entered for RADS.



U-VEL

SIDESLIP
A
Trajectory of the Center
/ of Mass of the Tractor
Figure 1. Tractor-semitrailer vehicle model.
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2.2 NORMAL LOADS

The normal load on each wheel of the vehicle is equal
to the sum of the static load on that wheel and the load
transfer (both longitudinal and lateral) taking place at
any instant of time, Since it is assumed that no pitch or
roll moments are transmitted through the hitch, the load
transfer at the trailer wheels may be determined in a straight-
forward manner based on the trailer c.g. height, the hitch
height, the forces on the trailer at the hitch and the road,
the track of the trailer, and the distance between the fifth
wheel and the trailer axle, '

The computation of the load transfer on the tractor
wheels is not quite so straightforward. The total longitudinal
and lateral load transfers can be computed in the same manner
as for the trailer. However, the apportionment of the lateral
load transfer between the front and rear axles of the tractor
depends on properties of the suspension system which are not
included in the simple TBS simulation. Hence, the user must
input the parameter, GAMl, which is the fraction of the total
lateral load transfer that takes place at the front axle of
the tractor. An estimate of this distribution can be obtained
by dividing the front roll moment per unit of roll angle for
a steady turn (i.e., roll rate is zero, and hence shock
absorbers are ignored) by the sum of the front and rear roll
moments. The fraction of the lateral load transfer taking
place on the rear axle or axles of the tractor, GAMZ, is equal
to 1.-GAM1.

2.3 TANDEM AXLES

A simplified model for tandem axles is included. The
distance between the tandem axles (AA) is entered by the user.
The properties of all the tires at both axles in the tandem



pair (including cornering stiffness and MU-slip curves) are
assumed equivalent and are specified for one tire. A quasi-
static inter-axle load transfer is specified by entering

the load transfer coefficient—GAM3 for the tractor tandem
axles and GAM4 for the trailer tandem axles. The product
of this coefficient and the brake force on one side of the
tandem axles gives the inter-axle load transfer for that side.
By proper choice of GAM3 (or GAM4), the inter-axle load
transfer may be approximated for the four spring or walking
beam suspensions. Based on a simplified analysis of the four
spring suspension [6]), GAM (GAM3 or GAM4) can be approximated
by -0.5. However, vehicle tests have shown that the load
transfer is over-predicted using this simple model. Based

on validation studies at HSRI, it is recommended that a value
of -0.38 be used for GAM for a four spring suspension. The
negative sign indicates that the load transfer in braking is
rearward (from the leading to the trailing tandem axle}.

For a walking beam suspension, GAM may be approximated
by (AA/R}(100.0 - TE)/IOO.O [1], where R is the radius of the
tire and Ty
"perfect' torque rods, TE will be 100.0, and there will be
no inter-axle load transfer. The coefficient, GAM, for the

is the percent of torque rod effectiveness. For

walking beam suspension is positive since the load transfer
produced by braking is forward onto the leading tandem axle.

It should be noted that the inter-axle load transfer
may be ignored entirely by entering "zeros" for GAM3 and
GAM4 .

2.4 TIRE MODEL

It is convenient to think of the simulation of the
shear forces at the tire-road interface in three distinct
categories, namely, lateral forces of a free rolling tire



operated at a slip angle, longitudinal forces of a straight
running tire, and finally, the tire shear forces due to
combined braking and steering. Each of these categories will
be considered below.

2.4.1 LATERAL FORCES OF A FREE ROLLING TIRE. Lateral
forces generated by a free rolling tire are computed based
on a formulation first offered by Fiala [7]. The lateral
force, FYF, is given by

FYF = - MUP*FZ{a - E%EL + g;) for o < 3 (1a)
FYEF = - MUP%EZ _§_ for o > 3 (1b)
o
where
T - gl 0o

This model has been used with some success in the
Calspan simulations [8], and in the APL Hybrid Simulation
[9]. The user input parameters are the cornering stiffness,
CALF, and MUP, the ratio of peak side force to normal load,
FZ.

Given appropriate CALF and MUP as input, the tire model
should produce a reasonably good fit to measured tire data
across a wide range of slip angles. It should be noted,
however, that CALF and MUP may be load sensitive (and
perhaps speed sensitive). Thus caution must be exercised
in the analysis of results involving extreme load transfer.

2.4.2 LONGITUDINAL FORCES OF A TIRE IN BRAKING. The
TBS tire model does not include a wheel spin degree of freedom
for the wheels, Thus quasi-static calculations replace wheel



spin dynamics. The user input parameters are MUP, the ratio
of peak longitudinal force to normal load; SP, the value of
longitudinal slip at which MUP occurs; and MUS, the friction
coefficient of the sliding or locked wheel. It should be
noted that the value of MUP for each of the longitudinal

and lateral force calculations is assumed identical. It is
most convenient to determine MUP from u-slip curves of FX/FZ
vs. S. A three-point representation of a typical u-slip
curve is shown in Figure 2.

Straight-line braking calculations take place in the
following way: An attempted brake force is determined based
on the input brake force table. (This tabular input is
explained in Section 2.8.) If the magnitude of the attempted
brake force is less than MUP#FZ, then the simulated brake
force will be set equal to the attempted brake force. Other-
wise, the simulated brake force will be set equal to
-MUS%FZ,

Note that, although spin dynamics are neglected,
longitudinal slip can be estimated. If

|EX| < MUP*FZ, then

_ FX/FZ
S = Sp —MOP ‘(Za)

Otherwise, the wheel is assumed to lock and

s = 1 (2b)

As in the case of the free rolling tire model, reasonable
input data should lead to reasonable results. However, it
should be noted that the peak and slide friction coefficients,
MUP and MUS, are likely to be speed and load sensitive. Thus
caution should be exercised in the interpretation of the
absolute values of the calculated results.



10
MUP [— —— —

|
MUS | T

Figure 2. MU-slip curve.



2.4.,3 TIRE SHEAR FORCES DUE TO COMBINED BRAKING AND
STEERING INPUTS. Maneuvers in which simultaneous steering
and braking take place result in the generation of both
lateral and longitudinal forces at the tire-road interface.
The calculation of these forces proceeds as follows.

The peak longitudinal friction coefficient is assumed
to decrease as a function of slip angle, ALPHA. The modified
peak friction coefficient is given by

MUMOD = MUP(1., - 1.7xALPHA) (3)

Simulated wheel lockup will occur if the magnitude of
the attempted brake force is greater than MUMOD*FZ.

The locked wheel brake force is given by
FX = - MUS%FZ&COS (ALPHA) (4)

The simulated lateral forces, in turn, are modified by
the brake forces. If the wheel is not locked, the lateral
force generated is

FY = FYE#E(S) (5)

where FY is the lateral force due to combined braking and
steering, FYF is the lateral force of the free rolling tire

due to slip angle, ALPHA and F(S). The "slip rolloff

function' accounts for the effect of slip on the lateral

force generated. The function F(S) is empirical and is
compiled in the computer program as a table of weighting
factor, F, versus the slip, S. The user has the option of
entering his own table of E(S) versus S if he so desires.
However, the table provided in the computer program is based
on data taken from two types of truck tires (sizes 8.00-16.5(E)

10



and 10.00-20(F)) tested at the Calspan TIRF facility [10].
Though the tires varied greatly in load ratings, and the
tires were tested at different velocities, the tables of
F(S) versus S were found to be similar for speeds of 40 and
55 mph, as shown in Figure 3. Hence, a table of F(S) versus
S was constructed from Figure 3 by using the average value
of F(S) at each value of longitudinal slip.

For the locked wheel condition, it is assumed that the
resultant force at the tire-road interface opposes the
direction of the sliding wheel. Since the locked wheel
longitudinal force is

~HUSH F ¥ cos (ALPHA)
FX = -M(P#COS(ALPHA) ,

the locked wheel lateral force must be

- MUSKF-X sm(Af...PHA)
FY = - MMP*SIN(ALPHA) (6)

To briefly summarize, provisions have been made in the
TBS tire model to determine the tire shear forces due to
steering only, or due to braking only, or due to combined
steering and braking. The input data required for the tire
model are CALE, MUP, SP, and MUS.

2.5 ANTILOCK MODEL

In theory, an antilock system can improve the average
traction output of a tire (both laterally and longitudinally)
over that produced by a locked wheel., To include antilock in
the model, lateral and longitudinal antilock effectiveness
coefficients (AFY, AFX) are defined. These coefficients are
used to modify the locked wheel traction as follows:

First, for both longitudinal and lateral traction, a
"hest case'" and a "locked-wheel case'" are defined. These

cases are!:

11
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Figure 3. F(s) vs. slip s for light [8.00-16.5(E)]
and heavy [10.00-20(F}] truck tires.

Note: horizontal bars bracket extent of variation in F(s).
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Longitudinal Traction

a. Best Case --- MUP%FZ symbolized by FXppak
b. Locked-Wheel Case --- MUS*FZ#C@S(ALPHA) symbolized by
FXy0cKED

Lateral Traction

a. Best Case --- FY computed from Fiala's model with
slip equal 0 i
P €94 » Symbolized by FYPEAK
b. Locked-Wheel Case --- MUS%FZ%SIN(ALPHA) symbolized by
FY10cKED

Then the antilock effectiveness coefficients are employed
as shown by the following equations,

+ AFX(FX

PEAK - FXLOCKED

FX = FX10CKED

FY = FY + AFY(FY

LOCKED pEAK - FYrockep

As is evident, AFX = AFY = 0 for no antilock system. It
should be noted that a negative value for either AFX or AFY
would simulate an antilock system which gives a performance
poorer than the locked-wheel case.

2.6 DUAL TIRES

Dual tires are treated as two single tires, each
sharing the vertical load on them equally and each yielding
the same longitudinal and lateral forces, FX and FY. Thus,
FX and FY, for dual tires, will be twice the respective
values of FX and FY for a single tire.

13



2.7 END OF COMPUTATIONS

The model cannot handle the case when a wheel 1ifts
off the ground (i.e., FZ less than 0). Hence, computations
are stopped if this happens, and the wheel which lifted off
is indicated on the computer output. (The wheels are
numbered as shown in Figure 4.) Further, if the articula-
tion angle, GAMMA, grows to become larger than the user-
specified value of IQUIT, computations are stopped. By
studying the time history of GAMMA (the trailer articulation
angle) and other output variables, it is possible to determine
whether the tractor jackknifed, or if the less violent
instability of trailer-swing occurred. If none of the above
occurrences takes place, computations will end when the
vehicle stops or when the user-entered termination time,
TIMF, is exceeded.

2.8 BRAKING AND STEERING INPUTS

Braking is handled in the model by specifying (in tabular
form) the time history of attempted brake force for the brakes
on each side of each axle, Since each side is considered
separately, brake imbalance may be simulated. For a tandem
axle pair, the two sets of brakes on one side of the tandem
axles are assumed equivalent. Hence the brake force time
history is entered for the brakes on each side of the leading
tandem axle only. The brakes on the trailing tandem axle
are then assumed to have the same time histories as the brakes
directly ahead of them on the leading tandem axle. It should
be noted that if the peak friction coefficient, MUP, for the
tire-road interface considered won't support the attempted
brake force at a wheel, that wheel is assumed to lock (or
cycle if the axle has an antilock system}, and the brake
force is computed as shown in Sections 2.4 and 2.5. Since
this model assumes quasi-static load transfer, the effect

14



Tractor

Trailer

7] IE
9(] [0

Figure 4.

The wheels on the tractor-trailer are identified
by the numbers shown in the figure above. Numbers
1, 2, 3, 4, 7, and 8 are always used whether or not
tandem axles are simulated., If the tractor has a
single rear axle, numbers 3 and 4 identify the wheels
on that axle. The numbers 5 and 6 are then omitted.
If the tractor has tandem axles, then 3 and 4 identify
the wheels on the front tandem, and 5 and 6 identify
the wheels on the rear tandem. The same applies for
the trailer. Numbers 7 and 8 identify the wheels on
the trailer axle if it is single, or they identify
the wheels on the front tandem if the trailer has
tandem axles. In this latter case, 9 and 10 identify
the wheels on the rear tandem.
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of "brakes-on" is immediate rather than suffering a delay
time during which the load is transferred and the tires
build up their new forces.

Each line of the brake force table entered must contain
the time, followed by the attempted brake force, FSX, on
each side of each axle {or tandem pair of axles). Up to
fifteen lines may be entered. If the time, t, at which the
attempted brake forces must be determined, is larger than the
last time given in the table, the attempted brake forces are
set equal to the last line of brake forces given. If t is
between two successive times given in the table, then the
attempted brake forces are linearly interpolated between
those two times.

Figure 5a shows three attempted brake force time
histories—one for a tractor front brake, the second for a
brake on the tractor leading tandem axle, and the third for
a brake on the trailer leading tandem axle, Brake imbalance
is assumed to be zero. The brake force table entered to
simulate the brakes represented by these time histories is
shown in Figure 5b.

Steering inputs are also entered in tabular form. Each
line of the table consists of the time followed by the
average steer angle for the front wheels., Up to twenty-five
lines may be entered. As with the brake force table, at
time t less than the last time entered, the sfeer angle is
determined by linear interpolation between the times (with
their associated steer angles) bracketing time t. If t is
larger than the last time entered, then the steer angle is
set equal to the last steer angle entered. The first entry
in both the brake force table and the steer table must be
at time equal to zero. However, the initial brake forces
and steer angle may be nonzero.

16



Brake Force in 1bs.

1200 +
Brake on Trailer Leading Tandem Axle
1000
BOO T )
,\; Brake on Tractor Leading Tandem Axle
?x Tractor Front Brake
600 4
400 +
200 4
[ | i 1l | i | 1
1 ] H T I i T |
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8
Time in Sec,
Figure 5a
TIME DEXIRED FORCEZX:
L=EL Fapnls Fanozn F=x 2 Foxodn FRxiF FEmag
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Figure 5b. Attempted brake force time histories for a tractor-trailer
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3. RUNNING THE PROGRAM

In the previous section the connection between the
vehicle model and the computer program was described. This
section presents the mechanics of operating the computer
program.

3.1 PREPARATION

The program calls for two subroutines that are included
in the IBM scientific subroutine package. These subroutines
are HPCG, a numerical integration subroutine, and SIMQ, which
is used to invert a 4x4 matrix in subroutine FCT (in the
tractor-trailer program only}.

Data for the program may be input from a file, though
an input file is optional. Additionally, an output file may
be specified to record the computed time histories for later
examination or for plotting purposes. (In the computer
program as written, 5 and 6 were used for the input and
output device numbers, respectively, of the computer terminal.
These may be changed by the user by changing the cards
IR=5 and IW=6 which appear in the main routine.)

3.2 INPUT

The program is designed so that the user answers
questions or enters data in response to questions or commands
from the computer.* The options available to the user in
entering his data are outlined in the flow chart shown in
the appendix.

*In answering yes/no questions, a yes answer will be inter-
preted by the computer program if the first letter of the
user's response is a "y." Any other response will be
interpreted as no. .
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The first input to be entered is the antilock key
(KEYANT), which specifies whether or not each set of axles—
tractor front, tractor rear, and trailer-—has an antilock
system, Next to be entered is the tandem axle/dual tire
key (KEYTD) which indicézés whether or not the tractor rear
and/or trailer have tandem axles and/or dual tires.

If the user has asked for a list of input parameters and
has indicated that he will input the data from the terminal,
he is primed by the symbol and verbal description for each
parameter that must be entered. After each parameter is
described, the user enters the value he wishes it to have.
The input data entered up through this point are shown in
Figure 6. The underlined quantities in the figure indicate
the responses of the user. Note that.the number which pre-
cedes each symbol is the identifying datum number for that
parameter. This number is used when changing a parameter,
as explained in the next section.

Depending on what the user entered for the keys KEYANT
and KEYTD, certain input parameters will not be necessary,
and are thus not called for by the computer. For instance,
if the user indicated that the trailer has a single axle,
then the parameter AAT (the distance between the trailer tan-
dem axles) will not be called for. Figure 7 shows the input
data for a tractor with tandem axles and dual tires and a
trailer with a single rear axle. As shown, data not necessary
are not entered. It should be noted that in entering data
from a file, the same rule applies—data not necessary is
not entered. Figures 8 and 9 show examples of two data files,
corresponding to the data shown in Figures 6 and 7, respec-
tively. These data files also include the brake and steer
tables which will be discussed shortly.

The last parameters to be entered are the antilock
effectiveness coefficients (ANTEFF) and the tire properties—
cornering stiffness (CALF), the peak and slide friction
coefficients (MUP and MUS), and the slip (SP) at which the
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Figure 6. Input data for White tractor and Fruehauf Trailer.
(Underlined quantities are responses of user.)
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Figure 7.
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Figure 8.
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Sample data file for data shown in Figures 6 and 10.
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Figure 9. Sample data file for data shown in Figure 7.

24



peak friction coefficient is obtained. The antilock
effectiveness coefficients are entered in pairs—the lateral
coefficient and the longitudinal coefficient separated by
commas (AFY, AFX). The coefficients MUP, MUS, and SP define
a MU-slip curve. Separate MU-slip curves may be entered for
each set of axles. However, the user may enter one MU-slip
curve for all the tires on the vehicle by answering "YES"

to the question, "DO ALL TIRES HAVE THE SAME MU-SLIP CURVE?"

Finally, the brake table and steer table are entered
(Figure 10). 1In entering data for these tables the user first
enters the number of lines the table has in I2 format. The
table is then entered line by line., For the brake table,
each line contains the time, followed by the brake force on
each side of the tractor front, tractor rear, and trailer
axles. Each line of the steer table contains the time,
followed by the average steer angle of the front wheels.,

3.3 CHANGES

After all data has been entered, or after a run has been
completed—yielding the time histories for a particular data
set as output—any parameter in the data set may be changed.

A parameter is changed by keying its identifying datum number,
and then entering its new value. Subsequent changes are
primed by a "?'" after which the datum number to be changed
should be entered. After all changes to be made have been
completed, a "0" is entered in response to the "?",

It should be noted that the antilock key (XEYANT) need
not be changed to engage the antilock option. If ANTEFF is
changed so that it has a non-zero component, the antilock key
is automatically adjusted. The same is not true for the
tandem axle/dual tire key (KEYTD). For example, if AAT (the
distance between the trailer tandem axles) is changed from
its assumed value of zero for a single axle to a finite length,
the tandem axle/dual tire key must also be adjusted by the user.
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The option set by the user as to whether or not he
wants to enter one MU-slip curve for all tires on the vehicle
remains as specified in the input data until the program is
reloaded. Hence, if the user specified one MU-slip curve
for all tires, he need only change MUP(1), MUS(1), and
SP(1) to effect a new MU-slip curve for all the tires. (It
should be noted that with the single MU-slip curve option in
effect, the user may change only MUP(1), MUS(1), or SP(1) |
and not any other elements of MUP, MUS, or SP.) If the single
MU-slip curve option wasn't in effect, the user must change
the MU-slip curves for the tractor front, tractor rear, and
trailer tires separately.

The brake and steer tables may also be changed. Lines
may be added after the last entry as long as the table
capacity isn't exceeded. Fifteen lines are permitted for the
brake table; twenty-five are permitted for the steer table.
Any lines already contained in either table may be changed by
reentering those lines with the new values.

After the brake and steer tables have been changed and
the static axle loads displayed (upon command), the user
must enter the initial articulation angle., If he enters zero
for this angle, and it is the first time through the program's
executior , the user is asked, "WILL ARTIC. ANGLE BE VARIED?"
If he answers "NO," tﬁe initial articulation angle will -
thereafter be assumed zero until the program is reloaded. If
the user answers "YES," or if, initially, he entered a non-
zero value for the articulation angle, he will have to enter
the initial articulation angle each time he goes through the
change procedure. '

Before the input is ended, the user is asked one last
time whether or not the data set, including the brake and
steer tables, is correct. If it is not, the entire change
procedure is repeated.
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An example of the '"change procedure'" is shown in
Figure 11, The number of changes shown is large in order
that the change procedure be clearly understood. (A flow
diagram of the change procedure is shown on page 52 .)

3.4 OUTPUT

There are 83 output variables for the articulated
vehicle and 52 for the straight truck. Each of these may be
displayed as a function of time, These variables are shown
in Figures 12 and 13. They may be listed at the terminal
on command the first time through the program's execution.

It should be noted that the output variables FX, FSX, FY, and
FZ are given for each side of each axle.

As shown in Figure 14, the user specifies the number of
output variables (to a maximum of 6), their identifying
numbers, and the'time stép upon which the output will be
printed.® After this output has been echoed, the user may
demand more output in the same manner. When the user has seen
{(or has put on file) all the output variables he wishes, he
answers "NO" to the question, "DO YOU WANT ANY MORE OUTPUT?"
The run is then completed. The user may then change the input
data or else input a whole new data set.

*#*1t should be noted that the times actually printed on output
may be as much as .02 sec off the desired values, due to the
method of integration of HPCG and the manner in which the
next time step to be displayed is triggered.
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Figure 11. Change procedure. (Underlined quantities are

responses of user.)
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Figure 11. (cont,)
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Figure 12. List of tractor-trailer output variables,
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Figure 12. (cont.)
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Figure 13, List of truck output variables,
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Figure 14. Output of tractor-trailer program. (Continuation
of Figures 6 and 10.)
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4., SAMPLE RESULTS

Figure 15 shows the input data used to simulate a
Diamond Reo straight truck. This truck is described in
detail in Reference 2. The brake and steer tables were
set up to simulate braking in a turn. The results were
compared to measurements and Phase II simulation results
(Ref, 2, p. 98) obtained previously for the same maneuver
(Fig. 16).* Since the TBS simulation is quasi-static, the
brake force at the tires occurs instantaneously with the
actuation of the brakes. Hence the longitudinal force, AX,
due to the brakes is generated about two-tenths of a second
before it occurs on the actual vehicle as shown by the
measured results in Figure 16. Because the brake force is
actuated early, the TBS simulation predicts that the vehicle
stops early, as can be inferred from the yaw rate time history.
The magnitude of the yaw rate reaches a higher value in the
TBS simulation than for the measured results, since aligning
torque and front roll steer were ignored in the TBS simulation.
These effects were included in the Phase II simulation, and
hence the agreement between the Phase II simulation results
and measured results is much better than that yielded by TBS.

Figure 6, previously referred to in Section 3.2, shows
the input data used to simulate a White tractor and a Freuhauf
trailer. The brake and steer tables entered (Fig. 10) were
used to simulate the same maneuver as was run and simulated
in the Phase II work (Ref. 2). Figure 18 shows a comparison
of the TBS results and the measured and Phase II simulation
results.** Again, the differences in the longitudinal and
yaw rate time histories is attributed to the fact that the
quasi-static simulation predicts premature braking. Further,

%The computer output of TBS used to plot the results shown
in Figure 16 is shown in Figure 17.

**Pigure 14 shows the computer output.
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Figure 15.

Input data for Diamond Reo truck. (Data read

from file.)
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Figure 17. Output of truck program.
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the quasi-static load transfer of the TBS simulation causes
the left side of axle 4 (the trailer front tandem axle)} to
lock immediately upon actuation of the brakes. This
illustrates the fact that entering the inter-axle load
transfer coefficients, GAM3 and GAM4*, results in the
correct prediction of which wheel locks,** though the time
of the occurrence is miscalculated. It should be noted that
if GAM3 and GAM4 were ignored (setting them equal to 0),
lockup would not have been predicted.

*These coefficients were estimated very crudely using
engineering judgment, based on the considerations outlined
on page 6.

**Lockup is determined by comparing the outputs of attempted

brake force, FSX, and achieved brake force, FX, If FX is
less than FSX, lockup has occurred.
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5. CONCLUDING REMARKS

A computer program for predicting the braking and
steering response of trucks and tractor-semitrailers has
been presented in this report.

This program uses a vehicle model which is much less
complex than the comprehensive model developed by HSRI in
Reference 1. Nevertheless, the model has features which
provide means for representing brake imbaiance, tandem axles,
dual tires, longitudinal and lateral 1load transfer, the inter-
action of longitudinal slip and slip angle in determining the
longitudinal and lateral components of tire shear force, and
the effectiveness of antilock braking systems.

This program is designed for user convenience. The
model employs a relatively small number of input parameters
in order to simplify the parameter-gathering demands placed
on the user. The program is written in an interactive form
for use at a computer terminal. The user is guided by cues
printed out at the terminal. Thus, the user can load the
input data, operate the simulation, and tabulate vehicle
response variables with only a limited familiarity with the
computer program,

It is intended that this computer program be useful for
(1) making preliminary studies of new or proposed vehicle
designs, (2) addressing engineering questions concerning
combined braking and steering maneuvers, (3) planning large-
scale vehicle test programs, or (4) planning detailed
simulation analyses using more complex vehicle models.
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APPENDIX

This appendix contains a flow chart which indicates
the options available to the user in running the TBS computer
program,
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