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ABSTRACT

Two-dimensional collision simulation has been used suc-
cessfully for two decades. Two- and three-dimensional
momentum methods are also well known. Three-dimen-
sional collision simulation can be accomplished using
finite element methods, but this is not practical for inter-
active collision simulation due to long mesh generation
times and run times which may take several days. This
paper presents an approach to collision simulation using
a new algorithm to track interacting vehicle surface
meshes. Three-dimensional forces due to vehicle crush
are taken into account during the solution and the dam-
age profile is visualized at run time. The new collision
algorithm is portable in that it takes as input vehicle mate-
rial properties and surface geometries and calculates
from their interaction three-dimensional forces and
moments at the vehicle center of gravity. Intervehicle
mesh forces may be calculated from a user-defined
force-deflection relationship. The derivation is discussed.
The paper includes examples using arbitrarily shaped
three-dimensional bodies as a proof of concept. Samples
are also included using three-dimensional vehicle
meshes. The simulations are shown to agree favorably
with theory, test, and finite element results.

INTRODUCTION

MOTOR VEHICLE CRASHES are the leading cause of
death for persons below the age of 40. In the U.S,,
370,000 people have died on the nations highways since
1990. Another 30 million have been injured.[1]* The cost,
in both real dollars and human suffering, is enormous.
Clearly, because of its impact on our society, it is impor-
tant that we focus on improving our understanding of the
cause of highway crashes.

1. Numbers in brackets designate references found at the
end of the paper.
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Engineers and physicists have understood the mechan-
ics of vehicle collisions for several decades. Until the mid-
seventies, collisions were analyzed by impulse-momen-
tum methods using a slide rule or hand-held calculator.
The 2- and 3-dimensional momentum equations can be
arranged to calculate impact velocities for two or more
vehicles given a set of exit velocities. Research by Emori
[2] suggested energy-based methods that were ultimately
turned into an algorithm by Campbell, first in his Ph.D.
thesis [3] and later in his important SAE paper [4] pub-
lished while he was at General Motors. McHenry devel-
oped the CRASH computer program [5] around these two
(momentum and energy) methods. The CRASH model
has been extended, first by NHTSA [6] and then by oth-
ers [7,8,9]; still it is based on the momentum and energy
methods in use for several decades. Additional research-
ers [10,11, 12] have programmed the momentum equa-
tions to calculate exit velocities from assumed impact
velocities.

In the mid-seventies, McHenry also developed the first
collision simulation model, SMAC [13]. Collision simula-
tion was a fundamentally new approach to collision anal-
ysis made possible by the digital computer. Collision
simulation methods calculate the collision forces and
moments acting on the vehicle, then solve the equations
of motion at small, user-defined time intervals. The
SMAC algorithm has been extended by others [14,15,16],
and is still the most popular simulation method in use
today.

Finite element technology has existed for decades. It has
been during the last decade or so that large-scale
dynamic simulations with the finite element method have
become possible. The processor speeds and memory
with modern workstations and desktop personal comput-
ers allow dynamic finite element simulations with reason-
able fidelity. Nonlinear material properties, large
deformations, and complex contact conditions are typical
of these analyses. These types of simulations are done
by vehicle designers and manufacturers.



Safety engineers have not used the finite element
method outside of the realm of manufacturing and
design. A single collision simulation typically takes sev-
eral hours or even days to process on high-speed super
computers.[29] In addition, developing a structural model
for a single vehicle may take several weeks or more.
Thus, the finite element method is not practical for use by
those researchers who reconstruct collisions that occur
on public roads.

Therefore, reconstructions are still performed using sim-
ple momentum and energy methods, or extended ver-
sions of the SMAC algorithm.

There exists room to improve the current methods for
reconstructing collisions. However, the quantam leap
from current methods to using a complex finite element
code is not practical. A compromise approach has been
developed employing techniques from finite element
technology, and from the current methods, while still mak-
ing a large advance in the state-of-the-art. This approach
is called DyMesh (Dynamic Mechanical shell).

The purpose of this paper is to provide a detailed
description of the DyMesh model. The process of inte-
grating DyMesh into a typical simulation model is also
provided. Finally, examples of results using DyMesh are
presented, first on simple 3-dimensional shapes, and
then on vehicle vs barrier and vehicle vs vehicle crashes.

GENERAL DESCRIPTION

This section gives an overview of the two main features
of the DyMesh method - collision detection and collision
forces.

COLLISION DETECTION — The DyMesh method is
based on a collision algorithm which uses a triangular
mesh defined by discretizing the exterior surfaces of a
vehicle(s). The algorithm detects the interaction of vehi-
cles by monitoring the positions of nodes, or vertices, and
surfaces representing the exterior of the vehicles. The
concept of a master surface and slave node is used. This
mirrors proven technology used with contact algorithms
for many years.

Contact algorithms are necessary in finite element analy-
sis to simulate the contact and impact between bodies.
These algorithms are widely used in explicit Lagrangian
finite element codes such as PRONTO3D [17,18], EPIC-
3 [19], and DYNA3D [20] and have been used success-
fully to simulate problems such as crush, impact, and
penetration [21,22,23]. Contact algorithms are also used
in static or quasi-static codes like JAC [24] and NIKE [25].

The basic operations performed in a contact algorithm
are location and restoration. Location involves searching
for surfaces in contact with one another and defining the
contact geometry such as depth of penetration. Restora-
tion involves finding the penetration depth and moving
the slave node (vertex) back to the slave surface. In this
context, we are using the classic definition of restoration

as it is used by finite element contact algorithms. It is not
at all related to restitution. Restoration is what causes the
surfaces to remain in contact. The terminology used in
the literature usually addresses one of the surfaces as
the master and the other the slave. In three-dimensions,
surfaces may be defined by four-noded quadrilateral ele-
ments or three-noded triangular elements. In the finite
element method, quadrilateral surface elements are one
side of a solid brick or hex element, and triangular ele-
ments are one side of a solid tetrahedral element.

Various algorithms treat the surfaces and forces using
different methods [23,25]. The general idea is to move, or
cause to move, one or both of the interpenetrating sur-
faces represented by discrete nodes so that the surfaces
are in line-to-line contact. In Taylor's method [17], forces
proportional to penetration depth are applied to slave
nodes, which accelerate the node out of the penetrated
surface. The slave node force is also apportioned to the
nodes of the master surface. The enforcement of this no-
penetration condition may occur over one or several
timesteps. Belytschko [19] moves slave nodes onto the
master surface and modifies the velocity of the node by

Av where Av = Ax/At. The displacement of the node
defines the displacement vector Ax and the current time

step is the value for At. Then the momentum associated
with modifying the slave node velocity is apportioned to
the master nodes.

Contact enforcement in finite element methods is
achieved on a local level. That is, depending on the par-
ticular method, forces, velocities, and/or momentum are
prescribed to nodes and elements on the surface of the
discretized body.

There have been many algorithms proposed to search for
contact as it can be the most expensive component of the
algorithm. An automatic global contact algorithm is
desired to minimize the user definition of pairs of contact
surfaces. Efficiency is important as the potential for much
unnecessary and time-consuming searching exists in a
global approach to contact.

There are many cases of contact, such as with corners
and self-contact, that may cause problems for contact
algorithms. An algorithm that monitors the velocity vec-
tors of nodes penetrating a surface reduces the uncer-
tainty involved in determining contact for many cases
[26].

Figure 1 shows two bodies discretized on their exterior
with nodes and elements. Consider the left body to be

the master and the right to be the slave. At time K the
bodies are moving towards one another with velocities

. ~k+1
vV and vg, but there is no contact. At t =t several
slave nodes have penetrated the master surfaces. Slave

node s has penetrated a distance p. The tilde on thr !
indicates that this is not the configuration at the end of
the time step. The penetrating slave nodes have yet to be
moved or restored to the master surface.



slave nodes

~k+1
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Figure 1. Master Surface-Slave Node Concept

Once penetration [Figure 2(a)] is detected, the pushback
direction is determined, and slave node s is restored to
be consistent with the kinematic constraints between the
two surfaces. In most explicit, finite element, dynamics
codes a force is applied to the slave node in a direction
normal to the master surface n,, [Figure 2(b)], which is
usually used as the pushback direction. This force accel-
erates the node to the outside of the master surface. The
vector n,, passes through the point on the master surface
to which the slave node projects. Another method used in
finite element codes applies the slave node force in a
direction of its normal ng. In this work since the impact
forces are accelerating the CG and not individual nodes
separately, nodes are restored by adjusting their three-
dimensional coordinates along the pushback direction,
and then calculating a force. It has been found that for
this application an effective pushback direction is in the
opposite direction of the node’s velocity. In this case, the
intersection of the line defined by the velocity vector with
the master surface is calculated, and the slave node is
moved to this point of intersection. This point of intersec-
tion is called the contact point.

COLLISION FORCES — After the slave nodes are

restored [Figure 2(c)], the vector 6k *1 is calculated. The
force on the slave node is a function of the vehicle stiff-
ness parameters, the volume of material associated with
the crush of slave node s, and A& where
s = [6°-5<*Y.

A difference between explicit, dynamic, finite element
codes and this vehicle simulation algorithm is that the
restoring force magnitude depends on the cumulative Ad
as opposed to depending only on the instantaneous local
surface penetration p (Figure 1).

During loading, the collision force at each slave node is
based on a general purpose, 3rd-order polynomial force-
deflection relationship,

2 3 .
Fooll = Ko+ ki A8 +k,A8" +kaA8" +K(A8) (1)

~k+1

t =

(@)

(b)

Figure 2. Restoration Phase



where kj, ki, ko and ks are the polynomial coefficients
(note that if k,=k3=0, the model reduces to that described
by Campbell [4]), and K is a damping coefficient. The
force-deflection relationship may also include a satura-
tion force, F,ax, @ Saturation deflection, d,,,x, and veloc-
ity- dependent node damping. A null band, d, is used for
small node deflections (typically 0.5 inches or less). A
force-deflection model for loading and unloading is
shown in Figure 3.

dmax
|

|
- = Fmax

Force

Ky

deflection

Figure 3. Force-deflection Relationship Using a 3rd
Order Polynomial with Saturation Force and
Deflection and Linear Unloading.

During unloading, the collision force is determined by an
unloading slope, K. Specification of the unloading slope
allows the model to account for restitution (a large
unloading slope causes minimal restitution, while a
smaller unloading slope would cause higher restitution).
Note that the unloading slope must cause the residual
node deformation to be zero or positive. The presence of
unloading is determined by monitoring the deformation
rate.

Tangential forces may also exist between interacting
meshes. The tangential force is calculated as the product
of the normal component of the collision force, F.q
(equation 1), and the friction coefficients for interacting
nodes. The direction of the tangential force is determined
from the direction of the relative node velocities.

Polynomial coefficients can be estimated from traditional
crash test data and by estimating a crush height. For bar-
rier crashes, this height is normally set to 30 inches (see
Figure 4). Thus, by dividing the traditional A and B coeffi-
cients by 30 inches and setting k, and k3 equal to zero,
reasonable estimates for k, and k; are obtained. Note
that because the collision forces are impulsive (i.e., occur
over a short time interval), a reasonable range of esti-
mates does not significantly affect the total computed
speed change, but does affect the peak acceleration and
duration of the collision (see comparisons with barrier
and pole collisions later in this paper).

Figure 4. Height of Crush Region
NUMERICAL IMPLEMENTATION

This section discusses the numerical procedures used to
implement the previously outlined methodology. The top-
ics include initialization, collision detection, and the calcu-
lation of collision and friction forces.

INITIALIZATION — Initialization calculations are only
done once. To initialize the collision algorithm the vectors
from the vehicle CG to each node are calculated. These
(0]

ij’
and j is the vehicle index. The superscript indicates the

vectors are denoted by &; ;, where i is the node number,

time level is zero. The O vectors are used to calculate the
crush forces, and will be described in more detail later.

Next, the connected surface neighbors to each node are
determined for each vehicle. Figure 5 illustrates the con-
cept for node i. There are six Level 1 neighbors (in this

example), denoted NI, i where 1 indicates a Level 1 or

connected neighbor, n ranges from one to the number of
neighbors, and j is the vehicle index. Level 2 neighbors
are also stored in memory. These are surfaces that share
a node with a connected neighbor. The vehicle mesh
connectivity that defines which nodes form a triangular
surface does not change during a simulation. Thus,
neighbors remain constant for a given mesh. These
neighbor data are used to associate an area with a pene-
trating node and sometimes are used in the algorithm
that searches to determine through which surface a node
has penetrated. In addition, at the beginning of each
timestep the area and outward normal for each surface is
calculated.

COLLISION DETECTION — A gross collision detection is
used during the simulation to initiate the detailed collision
algorithm. A bounding box is placed around each vehicle.
When these boxes overlap, the detailed collision algo-
rithm is used.

When the collision algorithm is invoked to search for colli-
sions, a neighborhood around each node is searched for
potential surfaces through which it may have penetrated.
This neighborhood is a rectangular bounding box whose



dimensions can be varied depending on the problem. For
each slave node the potential contact surfaces are tested
to determine which one, if any, it has penetrated. The
sequence of tests is described below.

N2, ;
N2, ;
N1,
N1,
Level 2 N26,j connected or
neighbor Le_verI]SL
neighbor

Figure 5. Neighbor Surfaces of Node i

First, the intersection of the line formed by the velocity
vector of a slave node with the surface in question is cal-
culated. This intersection or contact point, ch' is
defined as

Xep = Xgtva (2)

where X is the vector from the origin to the slave node,

v is the velocity vector, and a is a parameter given by

(X;=xg) th

O —m &

where x; —Xg is a vector originating at any one of the

three triangular surface nodes (i=1,2, or 3), and n is the
outward normal vector to the surface. The possibility
exists for the denominator in equation 3 to be zero. In this
case the velocity is parallel to the surface and there is no
intersection between the two.

Several tests are made to determine if this contact point,

ch' is valid. First, the vector from the contact point to

the slave node must be in the same direction to within
180 degrees of the velocity vector. Otherwise, the slave
node could not have possibly penetrated the surface in
guestion. This check amounts to calculating the dot prod-
uct of the two vectors and ignoring those surfaces for
which the dot product is negative. Another simple check
requires that the slave node be inside the potential sur-
face. This is done by taking the dot product of the vector
normal to the surface with the vector from the contact
point to the slave node. In this case the dot product must
be less than zero.

y

triangular (contact)
master surface 3 X

\ AL, Z

2

1 h >
O contact point \DV\
O slave node

Figure 6. Contact Point Inside Surface

Next, the area formed by the three triangles and the con-
tact point is calculated and compared to the area of the
triangular surface in question (Figure 6). If

Al+AZ2+A3 = A rs the surface is still considered a
candidate for contacting the slave node.

Another check determines if the distance from the slave
node to the contact point is too far to be realistic This dis-
tance is denoted by the vector h, shown as a dashed line
in Figure 6. The average velocity of the master surface
and the velocity of the slave node are used to determine
a maximum distance that could possibly exist between
the contact point and the slave node. If this distance is
too great, the surface is no longer considered for contact
with the slave node. If multiple surfaces meet all the
above criteria, the one that minimizes the distance
between the contact point and slave node is chosen.

COLLISION FORCES - There are no collision forces
until there is deformation. Deformation occurs when a
slave node is restored to its non-penetrating position
which is defined to be on the contact or master surface.
Figure 7(a) illustrates slave node s penetrating a surface
in two-dimensions. In Figure 7(b) the penetrating nodes

are restored to the contact points and the vector Ad is
shown for node s. The change in the & vector at each
node is used to calculate collision forces.

In this work an omni-directional stiffness is used although
the use of orthotropic or other spatially varying stiff-
nesses is not precluded. The slave node collision force,

F

curve that includes unloading. A ® vector component is

s. coll » due to the deformation A follows a tri-linear

in a state of loading when the deformation rate, Aéi, is

greater than a critical deformation rate ABC. For this
loading regime the collision force is given by

Fe col = (A+BlA3])A sign(A8)1 4)

s, col



master slave

former
position

(b)

Figure 7. (a) Penetrating Slave Node and (b) Restored
Slave Node in Two-Dimensions

where 1 is a unit vector in the direction of Ad, AS is the

area associated with the penetrating slave node, |Ad| is

the absolute value of AJ, A =A/H and B = B/H are
the modified stiffness coefficients, and sign(Ad) applies

the sign of each Ad component to each force compo-
nent. The area associated with each penetrating slave
node is approximated by

Z
=1

A =

S

Wik

A %)
1

where N, is the number of connected neighbors, and Ai
is the area of the i neighbor surface. In the loading
regime individual Ad vector components contribute to
forces in their respective directions (omni-directional stiff-

ness).

To unload in exactly the same direction as the slave node
was loaded would require knowledge of the entire defor-
mation history of the node. An efficient compromise
approach used by DyMesh is to define the unloading
direction to be the vector originating at the current slave
node location and ending at the original slave node loca-
tion, in the local vehicle coordinate system. When the
slave node deformation rate falls below the critical defor-

mation rate, |A'5| < ASC, the O vectors grow a distance

defined by the unloading slope K|, in Figure 3. The growth

of the vector is the maximum magnitude of the collision
force divided by the unloading slope,

5, = (maxHFs, coII”)/Ku' When the & vector unloads

or grows, in most cases, it will cause a contact condition
to be enforced with the surface of the other vehicle. This

contact condition reduces the growth of the & vector. The

corresponding force is calculated based on the new total
length of the & vector and the unloading slope K. Each

time step in the unloading regime the & vector will grow

until the total unloading distance is 6u .

Once the collision force is determined for a slave node,
the force is distributed to the three nodes of the corre-
sponding master surface. This distribution is accom-
plished using standard finite element shape functions
which apportion the force to the nodes. The force magni-
tude on master nodes is

Fi = Fs con Li (6)

where Fs coll is the magnitude of the slave node colli-

sion force and L; is the shape function associated with
master node /. The shape functions are given by

3
Li:Ai/ZA]— (7)
j=1

where A;is the sub-area as shown in Figure 6. The forces
F; are applied in a direction normal to the master surface.

An elegant feature of the loading and unloading is that it
is handled naturally through the contact algorithm. Colli-
sion forces are only present when there is contact
between the vehicles. The unloading methodology is
realistic in that it results in a body pushing itself away
from the other body in a reasonable and controllable
manner.

FRICTION FORCES - Friction forces are only present
when there is contact between a slave node and master
surface. The relative tangential velocity between the mas-
ter surface and slave node at the contact point is deter-
mined. If the relative velocity is zero there is no friction. If
there are nonzero friction forces, Fs.

Ff = (FS,COIIDq)u (8)

are applied in equal and opposite directions along the rel-
ative tangential velocity vector where n is the master sur-
face normal, and | is the friction coefficient.

DYMESH FLOW CHART - Figure 8 shows the main ele-
ments of the DyMesh algorithm which are enclosed in the
dashed box. DyMesh is only invoked if the gross collision
check indicates a collision is occurring or just about to
occur. If there is no collision or when DyMesh has com-
pleted calculating the collision and friction forces the sim-
ulation program continues by calculating other external
forces such as aerodynamic drag and tire forces (see
section entitled Typical System Model).



DyMesh
r— - — — — — — /7 7 r - — 7
gross

collision |
check” | | define potential |
| | slave nodes & @ |
- | master surfaces |

i) |
2 | | find surfaces |
8 | | in neighborhood |
° | of slave nodes vih = 0? |
| I ' f calc Xqp |

calc surface
?
| normals and vLh>07 |
| surface area nth<07? |
| A. = A. ?

| | find surfaces Z : ik
| [thru which nodes| | |
| have penetrated |

[
| | restore nodes |
| in contact & |

calc forces move node
. | calc AS |
return; . | calc Fooy | |
calc ! Ic E

other | caic Fr |
forces L ¥

Figure 8. DyMesh Flow Chart

The DyMesh algorithm can be called in a variety of ways.
For example, DyMesh can be called twice each timestep
(swapping the master and slave objects), or it can be
called once each timestep, alternating the master and
slave objects. The latter approach reduces computation
time, and was used in this work.

DYMESH OUTPUT — The output from DyMesh is a 3-
dimensional force vector acting at each of the damaged
nodes or vertices. Since the current vertex coordinates
are known, it is a simple manner to calculate the forces
and moments acting at the vehicle CG:

Nd
FX: cg = Z Fix,coll
i=1

Nd
= : 9
Fyx cg Z I:Iy,coll ( )
i=1
Ng
FZ! cg = Z Fiz,coll
i=1

Ng

= —F. .+ F. .
Mxv cg Z ( I:Iy,collzl F'z,collyl)
i=1
Ng
= —F. .+ F. .
Myv cg Z ( I:Iz,collxI F'x,collzl) (10)
i=1

<
I

Nd

—F. .+ F. .

Z,Cg Z ( I:Ix,collyl F'y,collxl)
i=1

Here, i is a damaged vertex, F; is the force on the dam-
aged vertex, N, is the number of damaged vertices, and
X;, ¥;, and z; are the vertex vehicle-fixed coordinates.

TYPICAL SYSTEM MODEL

This section discusses how the output from DyMesh can
be easily coupled into a vehicle simulation program. Sim-
ulation models normally include four common compo-
nents:

* main control routine,

< numerical integration routine,

« free-body analysis of the objects,
* acceleration calculation.

A flow chart for a typical simulation model is shown in
Figure 9. The DyMesh algorithm contributes to the force
calculations. It should be noted that these components
are required by all simulations, whether they are used to
model humans, vehicles, even the weather. The primary
difference is in the free-body analysis of the objects. In
our case, the objects are vehicles and our analysis
includes six degrees of freedom for the collision forces
and moments acting on each sprung mass.

From INPUT

CONTROLLING [

I
OTHER SPECIAL

ROUTINES
I

| |
Il PROGRAM NUMERICAL ———— |
| INTEGRATION corce |
| cacs |l
| |
| | |
| DERIVATIVE ||
| CALCS ||
| |
| S |
| |
| |
| |

Figure 9. Simulation Flow Chart



These four basic system components are described
below.

MAIN CONTROL ROUTINE — The main control routine
does just what its name suggests: it controls the
sequence of calculations. The following tasks are per-
formed by the typical control routine:

« initializes all variables

« calls the numerical integration routine

« calls the output routine

« performs logical checks that affect execution.

DyMesh requires that several parameters be initialized,
including the initial (undeformed) mesh coordinates, ver-
tex velocities, and forces and deflections material param-
eters (force vs deflection, friction, damping) for each
vertex. Calling the numerical integration starts the pro-
cess that updates the velocities and positions for each
timestep (see below). The output routine updates the cur-
rent simulation results for each timestep. This step
includes updating the current vertex coordinates so they
may be visualized as vehicle damage. Logical checks
include termination conditions and setting various flags to
control execution.

NUMERICAL INTEGRATION — The numerical integra-
tion routine causes the free-body analysis to be executed
for each timestep. Typically a fourth order routine is used,
meaning that the free body analysis is performed four
times per timestep. After the accelerations have been
computed (see below), they are returned to the numerical
integration routine to be integrated. This integration pro-
cess updates the velocity and position for the next
timestep. Any valid numerical integration method may be
used. Common methods include Runge-Kutta, Adams-
Moulton and Hamming's Modified Predictor-Corrector.

FREE BODY ANALYSIS — DyMesh calculates the colli-
sion forces and moments acting on each vehicle. This
process was described above in detail.

Other forces acting on the vehicle may include tire forces,
aerodynamic forces and suspension forces. After each
force producer is executed, the results are summed to
produce the total vehicle-fixed forces and moments act-
ing on the vehicle.

ACCELERATION VECTOR — Each force vector has an
associated acceleration vector. According to Newton's
2nd law, the acceleration in each direction is equal to the
product of the force and mass (linear acceleration) or the
product of the moment and rotational inertia (rotation).
Mathematically these equations of motion are expressed

2 Fx
> Fy
AE

m(u—vr+waq)

m(Vv + ur—wp) (11)

m(w + ug-vp)

z M, = L p+ar(l,,— |yy)
3 My = 1y il —1z,) (12)
M, i)
where m is the sprung mass, u, v and w are forward, lat-

eral, and vertical velocity, p is roll (about x), g is pitch
(about y), ris yaw (about z), and J; is inertia about axis j,

all in vehicle-fixed coordinates.

Izzf + pq(Iyy TIxx

To solve the equations, the mass matrix is inverted and
the accelerations are computed using the SimSol (simul-
taneous solution) function. [28]

OUTPUT — The primary output from DyMesh is the cur-
rent vertex coordinates and level of force acting at each
vertex on the mesh in the vehicle-fixed coordinate sys-
tem. The vertex coordinates allow the damaged mesh to
be visualized at each timestep. Intermediate values avail-
able from DyMesh include vertex deflection and deflec-
tion rates.

EXAMPLES

The first two examples use simple geometries to demon-
strate the algorithm. The first is a cube impacting a rigid
wall. Next, two colliding spheres are simulated. Then
three examples are presented with vehicle meshes. The
first of these is a simulation of a 35 mph barrier impact
test on a Ford Escort. Then a collision between a Festiva
and a telephone pole is simulated. Finally, a two-vehicle
simulation is presented.

In these examples piecewise-linear force-deflection rela-
tionships are used. For vehicles, the standard two-dimen-
sional force-per-width versus deformation relationship
[Figure 10(a)] is extended to three-dimensions using

equation 1 and assuming ky = kg =k =0. The three-

dimensional model takes the form shown in Figure 10(b).
The non-permanent deformation represented by G

(G = A2/28) is accounted for in the unloading, and the
forces are per unit area instead of width. Conversion to
the three-dimensional form is achieved by dividing A and
B by the height H (Figure 4) of the vehicle crushed when
the stiffness parameters were generated. The portion of
the curve with a slope K|, is the unloading path.
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Figure 10. (a) Standard 2D and (b) New 3D Force
Deflection Curve

The examples shown use an omni-directional stiffness.
That is, if a node is deformed equally in all three direc-
tions the force in each direction will be equal. The capa-
bility is for each node to have unique stiffnesses, and the
stiffnesses for each node may be a function of the coordi-
nate direction. Also, as stated earlier, the force model is
not limited to piecewise linear segments. More complex
guadratic or cubic functions may be defined by using a
nonzero k, or k3 in equation 1.

CUBE-WALL COLLISION — This simulation is of a unit
cube impacting a rigid wall at a velocity of 2 (consistent
units). A cross-section view of the problem set-up is
shown in Figure 11. The cube is made up of 8 vertices
and 12 elements. This simple problem provides an
opportunity to compare the DyMesh algorithm results to
theoretical results.

Figure 11. Cube Collision with a Rigid Wall

All stiffness parameters are zero except for B = 25. The
cube has a mass of 0.3. The initial kinetic energy is

KE = %(0.3)4 - 06. (13)

The unloading slope is set to twice the loading slope.
Therefore, the cube should rebound from the wall with
one-half of the original kinetic energy. Also, the maximum
deformation can be calculated based on conservation of
energy. Each of the four vertices will absorb one-quarter
of the energy. Equating the energy used in deforming
each vertex to kinetic energy gives

1 _ 0.6
where the factor of one-half comes from knowing one-
half of the energy is used to induce permanent deforma-

tion. Since the loading slope, B, is 25, the maximum the-
oretical deformation can be solved for in equation 14 by

substituting F,, = 25A% which gives

2 _ 0.6

1
=25(Ad = =
2 ( 4

max)

or as)

AS, ., = 0.1095 .

Since only one-half of the damage will be left following
restitution, the final deformation is given as

— A6t‘l’l X —

Doy = 2"" = 0.05475 . (16)
The energy and deformation history for a vertex in the
DyMesh simulation are shown in Figures 12 and 13. It
can be seen that the final kinetic energy is 0.3, or one-
half of the original value of 0.6, which agrees with theory.
In the lower plot, the maximum deformation is 0.1095

which agrees with theory. The final deformation, Ad;, .,

is 0.0574 which differs by 4.8% from the theoretical value
of 0.05475.



0.5 \

ool )

0.3 \

oz |\ /
N/

0.00 0.05 0.10 0.15

Time

Kinetic Energy

Figure 12. Cube-Wall Results - Kinetic Energy

0.120
0.100 A

0.080 / \
0.060 / \

/
0.040 /
0.020

0.000 ‘ ‘ ‘
0.00 0.05 0.10 0.15

Time

Figure 13. Cube-Wall Results - Deformation

SPHERE-TO-SPHERE COLLISION — This example illus-
trates the DyMesh algorithm on two spheres discretized
by 1,452 triangular surfaces. The problem set-up is
shown in Figure 14(a). Both left and right spheres have a

mass of 0.1, a radius of 0.5, a stiffness B = 500, and a

velocity of 3 (relative velocity of 6) in the x direction. A
time step of two milliseconds is used.

Two simulations are presented - without and with restitu-
tion. Ideally, the interface between the colliding spheres
should be flat. Figure 14 shows the two spheres at t=0
and t=0.7, and Figure 15 shows two views of the left
sphere at t=0.7, without restitution. The surface area
which contacted the right sphere is nearly flat.
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History plots of kinetic energy, velocity, and acceleration
are shown in Figure 17. It can be seen that without resti-
tution the impact is plastic. Both spheres come to rest fol-
lowing the impact, and the acceleration quickly goes to

Zero.

With restitution both spheres rebound and the accelera-
tion more gradually approaches zero as the spheres sep-
arate as seen in the plots in Figure 17. The geometry of
the left sphere during restitution is shown in Figure 16.
The discrete time step and alternate swapping of master
and slave surfaces causes slight irregularity in the sur-

face as the d vectors are lengthened.
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Figure 16. Sphere Geometry During Restitution

VEHICLE-TO-BARRIER COLLISION - In this simulation
the DyMesh method is used to simulate a 1997 Ford
Escort barrier crash test. A government report fully docu-
ments the test.[27] The vehicle weighed 2,963 Ib and
impacted the barrier at 35.1 mph (617.8 in/s). The dam-
aged region length L was measured to be 53.1 in. The
damage profile is shown in Figure 18.

C6=13.9 o
C5=16.7 A
C4=17.4 gi ( )
C3=19.4 7 |
C2=19.8 +|
= N
C1=183 =t

Figure 18. Escort Damage Profile

Assuming that the vehicle can withstand a 7 mph colli-
sion without damage, the standard stiffness coefficients
are A=501 Ib/in and B=115 Ib/in?. Assume that the dam-
aged vehicle height in the test is 35 in., and the modified

stiffness coefficients are :4 = 14.3 Ib/in® and é = 3.3

Ib/in®. These constants will be used in the DyMesh simu-
lation.

Figure 19 shows the mesh of the escort and the barrier at
the beginning of the simulation. The Escort mesh has
2,075 nodes and 3,827 triangular elements. The barrier
is made of eight nodes and six large triangular elements.

11

To emphasize the fact that only collision forces are being
considered, tires are not shown and are not part of the
calculation. The time step used in the simulation is one
millisecond, and the entire simulation takes 40 seconds
to run using a 233 MHz Pentium Il processor.

side view

back view

Figure 19. Escort and Barrier Mesh

Figure 20 shows the velocity and acceleration history of
the DyMesh simulation compared with the test. The
change in velocity in the test was 705 in/s compared with
742 in the DyMesh simulation - a difference of 5.2 per-
cent. The peak acceleration in the test was -40 G com-
pared with -44 G in the DyMesh simulation - a difference

of ten percent. These results suggest the selected A and

B stiffness coefficients were too stiff. Reducing these
values would reduce the peak acceleration and increase
the duration of the collision. Note however, the selection
of the stiffness coefficients have little effect on the total
velocity change. As a demonstration of this, two addi-
tional barrier simulations were run with stiffness coeffi-
cients ten percent higher and lower. The peak
acceleration differed by as much as 16.8 percent from the
nominal case, but the velocity change only differed by 0.5
percent at most.

Figure 21 shows the deformed mesh geometry with con-
tours of deformation overlaid on the mesh. The maximum
deformation occurs in the center of the bumper, that part
of vehicle which protrudes the most. It is interesting to
note the contour changes between 75 ms and 100 ms. At
100 ms it is evident from the recession of the darkest
contour that there has been some restitution (i.e., there is
less area covered by the darkest contour at 100 ms com-
pared with 75 ms).
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VEHICLE-TO-POLE COLLISION — This simulation is of a
Ford Festiva collision with a rigid telephone pole. A simi-
lar simulation of a Ford Festiva is presented by Grau [29]
using the finite element model available from the George
Washington University. The DyMesh Festiva model is
composed of 5020 nodes and 9403 triangular elements.



The zone of impact has been refined to accurately
resolve the contact with the simulated telephone pole.
The rigid telephone pole is constructed from 1,053 nodes
and 2,080 triangular elements and is 8.7 inches in diame-
ter. The Festiva is traveling 20 mph when it impacts the
telephone pole as shown in Figure 22.

The mass associated with the Grau finite element simula-
tion was suspect; however, for purposes of comparison,
the same was used in the DyMesh simulation.[30] The

modified stiffness coefficients used are A:9.12 Ib/in?

and é:1.80 Ib/in3. Since the finite element model results

showed no rebound velocity from the pole, the unloading
stiffness was set to infinity so that there is no restitution.

Figure 22. Initial Positions for Festiva-Pole Collision

Figure 23 shows the deformed geometry at 20, 80, and
100 milliseconds. The rigid pole has been removed from
this figure for clarity. It can be seen that the vehicle takes
on the circular shape of the pole. At 80 ms a few element
edges are seen stretched through the pole. Only nodes
or vertices, not edges, have contact prescribed in
DyMesh. (Please note the occasional irregularity in the
windshield and window mesh is due to rendering and is
not a result of DyMesh.)

Figure 24 shows the acceleration history plot of Grau’s
finite element simulation and the DyMesh simulation. The
rise time for the DyMesh simulation is slightly longer, but
the agreement in peak acceleration is good with the dif-
ference being less than ten percent. In this example the
selected stiffness coefficients were too soft, resulting in
the underestimation of peak acceleration and the overes-
timation of crush depth. Again, it is clear that the change
in velocity agrees well with the finite element model (Fig-
ure 25).

14

t=20ms

i
i
!

7

—
—

—_—

W W

I

ok
g

¥ e
lf\ =

t=80ms

Figure 23. Deformed Geometry (pole not shown)

0.0

STANC

c
: VN
i)
& -15.0
3 \ N
8 200
< \/\ ——DyMesh
-25.0 A
—— FE Model
-30.0 ‘ T
0.00 0.05 0.10 0.15
Time (s)

Figure 24. Acceleration Comparison



400.0

.

@ 300.0

: \\

2 200.0

(8]

: A\

2 1000 —DyMesh |/
\ \— FE Model

0.0 T T
0.00 0.05 0.10 0.15
Time (s)

Figure 25. Velocity Comparison

VEHICLE-TO-VEHICLE COLLISION - This offset frontal
impact simulation between two Escorts is a severe test of
the DyMesh algorithm. The irregular shapes of the
bumpers and varying size of elements challenge the
algorithm to maintain a reasonable mesh shape during
deformation.

Figure 26 shows the initial positions of the two vehicles.
Both vehicles are assumed to weigh 2975 Ib and have

yaw inertia of 20,000 Ib-s2-in. The vehicle’'s x-axes are
initially colinear. Both the left and right vehicles have an
initial velocity of 15 mph. Vehicle stiffnesses are

A 14.0 Ib/in? and B = 3.3 Ib/ind.

A time step of one millisecond is used in the simulation.
Twenty milliseconds of simulation time are achieved for
every one minute of elapsed (wall-clock) time when run-
ning on a Pentium Il, 233 MHz processor. The simulation
is run until the X velocity of both vehicles reaches zero.

Figure 27 shows both vehicles at various times during the
simulation. The vehicles begin to rotate due to the offset
forces. At t=88 ms the vehicles are shown contacting
each other as well as with the left vehicle removed to
expose the current damage profile produced by DyMesh.

Correct restoration in the contact algorithm is seen in the
damage profile. Incorrect restoration would result in the
vehicle meshes moving through one another without
damage. The robustness of the contact algorithm in
DyMesh is evidenced by the smooth and continuous
appearance of the damage (Figure 28) even though the
vehicle surface mesh uses elements of different sizes
and aspect ratios.
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Figure 27. Vehicles at Various Times

Figure 29(top) shows the X velocity of each vehicle which
illustrates the symmetry of the collision simulation. Figure

29(bottom) shows the crush area calculated for each
vehicle. It is important to note that the crush areas are
calculated independently for each vehicle. For a symmet-
ric collision such as this one, the crush areas would ide-
ally be identical. The plot indicates the areas are the
same, except for a small time around 70 milliseconds.



DISCUSSION

The DyMesh method has the potential to allow more real-
istic collision simulations than previously possible in an
interactive simulation environment. Three-dimensional
forces and moments, as well as damage profiles, can be
visualized. Vehicle damage is not as realistic as with the
finite element method (i.e., DyMesh will not simulate
hood buckling), but the results for change in velocity are
good. The simulation run times are on the order of sec-
onds or minutes, not several hours which is typical of
finite element methods.

The overall resolution of the simulation is dependent
upon the mesh resolution, as was demonstrated in the
telephone-pole example. Penetration of bodies smaller
than the mesh cannot be resolved by DyMesh.

Figure 28. Close-up Of Damage Profile

The method is not dependent upon the vehicle shape
being described by a simplified geometric body, such as
a parallelepiped. The method holds promise for car-to-
barrier, car-to-car, heavy truck and articulated vehicle
collisions. Underride can be simulated in this three-
dimensional method.

The DyMesh method requires a vehicle mesh and 3-

dimensional stiffness coefficients, A and B. Meshes of
reasonable resolution are available from a variety of
sources. [e.g., 31,32]. Initial tests presented in this paper

suggest A and B calculated from currently available A
and B coefficients are sufficient for speed change calcu-
lations required in crash reconstruction. This finding is
supported by previous experience with collision simula-
tion programs (e.g., [14,16]). Experience has shown
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these estimates are also sufficient for use as a starting
point for rollover simulation [33].

Collision pulses from DyMesh may also be used for other
purposes, including occupant simulations. For these

uses, the proper selection of A and B is more important.
For these applications, the user must confirm the simu-

lated and measured crush depths match. At this time it is
not felt that additional testing is required to use DyMesh.
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Figure 29. Velocity and Crush Area Histories

Further work needs to be performed to evaluate the use
of DyMesh in collisions wherein the mechanism of con-
tact is primarily shear, for example, the case of a passen-
ger car sliding under the side of a semi-trailer.

CONCLUSIONS

The DyMesh method is described for calculating the
three-dimensional interactions of colliding vehicles or
structures. This method makes possible a more realistic
numerical calculation and enhances the visual effective-
ness of the simulation.



A novel method for computing the vehicle deformations
based on a contact algorithm has been implemented.
The force-crush model is derived which transforms the
usual two-dimensional relationship to three-dimensions.
The equations of motion are presented which depend on

the

three-dimensional collision forces output from

DyMesh.

Examples have shown the DyMesh method to be robust
and effective. This work lays the foundation for a more
thorough validation effort to be undertaken in the near
future.
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