SAE TECHNICAL

PAPER SERIES 960889

Programming FORTRAN Applications for HVE

Wesley D. Grimes

Collision Engineering Associates, inc.

Reprinted from: Accident Reconstruction: Technology and Animation VI

(SP-1150)

The Engineering Socie . .
QA = For A dvancing%lobilit;y International Congress &. Exp.om.tlon
“Land Sea Air and Space Detroit, Michigan
INTERNATIONAL February 26-29, 1996

400 Commonwealth Drive, Warrendale, PA 15096-0001 U.S.A. Tel:(412)776-4841 Fax:(412)776-5760

The appearance of the ISSN code at the bottom of this page indicates SAE’s consent
that copies of the paper may be made for personal or internal use of specific clients.
This consentis given on the condition however, that the copier pay a $7.00 per article
copy fee through the Copyright Clearance Center, Inc. Operations Center, 222
Rosewood Drive, Danvers, MA 01923 for copying beyond that permitted by Sections
107 or 108 of U.S. Copyright Law. This consent does not extend to other kinds of
copying such as copying for general distribution, for advertising or promotional
purposes, for creating new collective works, or for resale.

SAE routinely stocks printed papers for a period of three years following date of
publication. Direct your orders to SAE Customer Sales and Satisfaction
Department. ,

Quantity reprint rates can be obtained from the Customer Sales and Satisfaction
Department.

Torequest permission to reprint a technical paper or permission to use copyrighted
SAE publications in other works, contact the SAE Publications Group.

GLOBAL MOBILITY DATABASE

All SAE papers, standards, and selected
books are abstracted and indexed in the
Global Mobility Database.

No part of this publication may be reproduced in any form, in an electronic retrieval
system or otherwise, without the prior written permission of the publisher.

ISSN 0148-7191
Copyright 1996 Society of Automotive Engineers, inc.

Positions and opinions advanced in this paper are those of the author(s) and not
necessarily those of SAE. The author is solely responsibie for the content of the
paper. A process is available by which discussions will be printed with the paper if
itis published in SAE Transactions. For permission to publish this paper in full orin
part, contact the SAE Publications Group.

Persons wishing to submit papers to be considered for presentation or publication
through SAE should send the manuscript or a 300 word abstract of a proposed
manuscript to: Secretary, Engineering Meetings Board, SAE.

Printed in USA 96-0049

960889

Programming FORTRAN Applications for HVE

Copyright 1996 Society of Automotive Engineers, Inc.

ABSTRACT

The Human Vehicle Environment (HVE) program,
developed by Engineering Dynamics Corporation,
combines the vehicle parameters, physics and
graphics 1nto a single computer system for use in
analyzing motor vehicle collisions, handling issues,
studying occupant motion, etc. One of the most
valuable assets of the HVE program is the open
architecture that allows easy access to the data and
graphics capabilities from an independent computer
program. Thus, virtually any program that can be
recompiled on the Silicon Graphics system can be set
up to utilize the HVE tools. HVE is written in two
computer languages known as C and C++
{pronounced “C plus plus”), this aids in the graphics
processing. Unfortunately, FORTRAN programs do
not automatically interface with C or C++ programs.
These programs must be modified to allow a two-way
data path to and from HVE. This paper will briefly
review the concepts of interfacing programs and then
give specific examples of combining FORTRAN
programs with the HVE environment.

INTRODUCTION

Over the past 30 years the major programming
language for computer programs in the field of
collision reconstruction has been FORTRAN. The
majority of motor vehicle and occupant simulation
programs were originally developed in the
FORTRAN computer language, with many of these
later ported to another language such as C.

183

Wesley D. Grimes
Collision Engineering Associates, Inc.

Most of these FORTRAN programs are difficult to
use because of restrictive file formats and the lack
of graphics capabilities. In addition, when setting
up such a program, the graphics necessary for
visualizing the vehicle or occupant motion must
often be re-written for each application. The HVE
(Human Vehicle Environment) program. developed
by Engineering Dynamics Corporation, provides
these graphical interface routines as well as other
utility programs that make interfacing with a 3-
dimensional environment model much
easier.[1,2,3]*

This paper will present basic concepts required to
write and execute a FORTRAN program within the
HVE environment. This discussion is meant for
anyone trying to develop computer algorithms
nside the HVE environment, but it will also aid an
end user in understanding why HVE programs
behave the way they do.

HVE PROGRAM

HVE 1s an interactive 3-dimensional analysis
environment developed for a Silicon Graphics (SGI)
computer system. The HVE environment is an open
architecture much like the Windows environment
on the IBM PC computers. This environment
makes system functions available to the developer
that allow access to sophisticated algorithms.

* Numbers in brackets designate references found
at the end of the paper.

The HVE system has many useful analysis programs
currently available from Engineering Dynamics.
These programs include EDCRASH, EDSMAC,
EDSVS, EDVTS, EDVSM (3-d vehicle handling
program), EDVDS (3-d tractor/trailer simulation),
and EDHIS (3-d occupant simulation).[4-10]

The HVE environment expands the abilities of 2-
dimensional programs, such as EDSMAC, EDSVS,
EDVTS, etc., by allowing the program to interact with
a 3-dimensional environment. Figure 1 shows an
example of an EDSMAC run with the impact taking
place on a sloped roadside. These programs, as well
as the HVE environment, are written in the C and
C++ (pronounced "c plus plus") computer languages.

In the collision reconstruction community there are
many programs available that have been written in
FORTRAN. There are also many opportunities to
develop more elaborate simulation models using HVE
as a programming environment. The HVE
environment allows analysts to concentrate on the
development of the physics model and end the cycle
of repeatedly developing a user interface. HVE
contains the necessary groundwork for virtually any
detail of physics modeling that deals with collisions

involving motor vehicles, occupants, and
pedestrians.[2,3]

The basic layout of the HVE system consists of
three object databases; human, vehicle, and
environment, along with tools to interface with
physics programs. The physics programs are used
in the analysis of motor vehicle, occupant, and
pedestrian collisions using objects from the
appropriate database.

Each database contains generic objects, such as a 4-
door passenger car, as well as very specific objects,
such as a 1984 Chevrolet Celebrity. The user can
select the existing objects or add user-defined
objects to the database as needed.

The human database contains information and
specifications on several human models that can be
used in developing physics programs describing
how an occupant, or pedestrian, would behave in a
motor vehicle collision. Figure 2 shows an example
of a pedestrian impact analysis using the EDHIS
program. Similarly, the vehicle database contains
specifications on motor vehicles that can be used in
developing physics algorithms describing motor

Figure 1 - EDSMAC analysis on sloped roadway shoulder.

184

Figure 2 - Pedestrian collision analysis using HVE.

vehicle collisions, handling, overturns, etc. The
environment model also contains information
necessary to develop physics algorithms describing
how a vehicle would interact with its surroundings.
All of this data is available to an analyst or
programmer through a series of function calls within
the HVE environment.

FORTRAN AND C COMPARISON

SIMILARITIES - As described earlier, HVE is
primarily written in the C++ computer language. The
HVE physics programs currently available are written
in C. There are some differences between how C and
FORTRAN behave, but many similarities as well.[11]
FORTRAN has COMMONSs while C has
STRUCTURE:S; although not strictly the same, these
are similar enough in concept that they can be
discussed together. FORTRAN calls
SUBROUTINES and C calls FUNCTION:S; again, not
strictly the same, but very similar.

ARRAY INDICES - The differences between
FORTRAN and C need to also be understood. One of
the main differences is that C starts all indices at zero

185

(0), while FORTRAN starts at one (1). Thus, in
FORTRAN an array x(10) contains ten elements (1
through 10), while this same x[10] in C contains ten
elements (0 through 9). Note that in some enhanced
versions of FORTRAN, the programmer can set
what the lower array is (1 or 0), but in general most
FORTRAN compilers start at one.

ARRAY STORAGE - Another difference 1s that
FORTRAN stores two dimensional arrays in
column order first, with the left-most subscript
varying fastest. Thus in FORTRAN an array x(2,3)
is stored as:

X(I-l)a x(2~1)‘ x(1~2)9 X(Z*“,\)~ X(173)‘ X(2~3)

In C the arrays are stored just the opposite, 1n TOW
order first, with the right-most subscript varying
fastest. Thus, in C this same x[2][3] array would be
stored as:

x[0][01, x[0]{1], x[O][2], x[1][0]. x[1][1}. x[1][2]

With this in mind, FORTRAN and C can pass data
back and forth without problems.

In general, programs written in C and FORTRAN can
pass data back and forth in FORTRAN COMMONs
and C STRUCTURE:s. The variables can also be
passed as arguments, but it is much simpler to set up
STRUCTUREs and COMMON:Ss to accomplish this
task.

VARIABLE NAMES - A peculiar thing about the
FORTRAN compiler on the SGI system is that it
appends an underscore (_) character to any
SUBROUTINE, FUNCTION, COMMON, or variable
name. All names are also converted to lower-case,
unless specific compiler switches are set to allow
upper- and lower-case names as unique. Thus, the
FORTRAN statements;

SUBROUTINE COLL
COMMON /DATAI/L R

results in the names “coll_”, “datal_", “i_", and “r_"
being passed to the linker program. In order to
interface with a C program, these variables must be
referenced with the underscore, and STRUCTURES
in the C program must append the COMMON name
at the end of the STRUCTURE definition. Thus, to
interface with this FORTRAN SUBROUTINE, the C
routine would look similar to the code in Figure 3.

struct S { int i; float r;} datal_;
main()
{
coll_O;
printf(“%d %f \n”, datal__.i, datal_.r);

}

Figure 3 - Code required in C to interface with
FORTRAN code shown in text above. '

This example simply sets up the necessary interface
between the FORTRAN and C routines, then calls the
COLL subroutine, and finally prints the values for the
FORTRAN variables I and R.

HVE PHYSICS PROGRAM REQUIREMENTS

Every program executed in the HVE environment has
very specific requirements. These requirements

186

specify how the physics program “looks” to HVE,
and this allows HVE to easily run and communicate
with these separate programs. Every program
developed must have at least the six C functions
listed in figure 4.

ParseHveInput() - Retrieves HVE data values and
places values in the physics program variables.

CalcMethodInfo() - Sets up flags and information
about the physics program.

SelectVehicleOQutputTrackVars() - Set up for
which vehicle variables will be used in the
physics algorithms and which variables will have
values passed back to HVE.

SelectHumanOutputTrackVars() - Set up for
which human variables will be used in the
physics algorithms and which variables will have
values passed back to HVE.

ExecuteCalcMethod() - Contains the actuél
physics algorithms, or the functions that call the
physics algorithms.

ShutDown() - Contains the functions to end the
program.

Figure 4 - List of six functions the developer must
provide in their program for HVE.

These six C functions are called by the HveMain()
program and this is what allows developer-written
programs to communicate with HVE. When a
program is compiled and linked with the HVE
libraries, a function called "HveMain()" is linked
into the executable program. When the user
executes a program that has been set up to run under
HVE, control is basically passed to this
"HveMain()" function.

Thus, every HVE program has a "HveMain()"
function in the executable code. The SGI system,
running under UNIX, keeps track of all these
programs so no conflicts occur even though they all
have many of the same function names running at
the same time.

HveMain() - As discussed above, every HVE program
will have a "HveMain()" function. The developer
does not write this function, it is included in the HVE
libraries and is combined with the program as the
program is compiled and linked. The HveMain()
function is the main function for each program and
this is where control is passed from HVE to the
developer's program. Inside the HveMain() function,
there is basically a program loop that calls the four
functions:

ParseHvelnput()
ExecuteCalcMethod()
CaicMethod()
ShutDown()

Note that SeiectVehicleOutputTrackVars() and
SelectHumanOutputTrack Vars() are called by
OutputTrackSetup(), which is called by HveMain().
Thus, all six required functions are either directly, or
indirectly, called by HveMain().

ParseHveInput()- This user written function contains
the code that takes the HVE variables and assigns
them to the user's program variables. For instance,
the user's program may use a variable "xpos" to
represent the x-position of a vehicle in a dynamic
simulation program.

This data is in "EventVehicle[0].PosVel[0]. XPos"
inside the HVE EventVehicle structure. Recall that
array indices begin with O in the C language. In this
case, one of the assignment statements in the
ParseHvelnput() function would be:

xpos = EventVehicle[0].PosVel[0]. XPos

Virtually all of the vehicle data is parsed out into the
variables for use in the physics program inside this
function. The HVE environment includes vehicle
data on everything from the number of axles on a
vehicle to information on driver steering or braking.

The HVE vehicle data structures are broken up into
two major groups; the Vehicle and EventVehicle.
The Vehicle structure contains the variables that do
not change from one event to another, such as:
vehicle weight, moments of inertia, suspension and
tire properties, etc. The EventVehicle structure
contains the variables that will change from one
event to another, such as: vehicle position or
orientation, vehicle speed and acceleration, etc.

The Vehicle structure defines a vehicle “sitting in
the parking lot” while the EventVehicle structure
specifies a vehicle unique to a certain event. All the
variables used in the physics program that relate to

Code in FORTRAN routine:
SUBROUTINE FTNCALC
REAL POS, VEL, DELTAT, ENDT
COMMON /INIT/ POS(6), VEL(6&6), DELTAT, ENDT
COMMON /DATA/ N, TIME(200), EPOS(6,200)

Code in C routine:
init__.pos{0]! = EventVehicle[0].PosVel (] . XPos;
init_.pos(l] = EventVehicle[0].PosVel[J].YPos;
init_.pos{2] = EventVehicle[0].PosVel|[(].ZPos;
init__.pos{5] = EventVehicle[0].PosVelll].YawOrient;
init_.vel(0] = EventVehicle[0].PosVelil].xVel;
init_.vel[l] = EventVehiclel0].PosVel[0].vVel;
init_.vell(4] = EventVehicle[0].PosVel[0].PitchvVel:;
init_.vel[5] = EventVehicle[0].PosVel[0].YawVel;
init_.deltaT = Event.Info.SimControls.dtOutput;
init_.endT = BEvent.Info.SimControls.Tmax;

Figure 5 - Partial listing of FORTRAN and C code need for ParseHvelnput() function.

187

CalcMethodHeader .NumObjects
CalcMethodHeader.Options.IsSimulation

the values.
*/
CalcMethodHeader .Options.ThreeDPosVel

shown as translucent *"targets”
as normally rendered vehicles

/* The following
available in Event mode.

*/

CalcMethodHeader .Options

CalcMethodHeader .Options

CalcMethodHeader .Options

CalcMethodHeader.Options

.PayloadXIsUs
.Payload¥IsUs
.PayloadZlIsUs

CalcMethodHeader.Options.IsReconstruction

tell HVE to make the following

.DamageDataDlgIsUsed

Event.Info.NumSelectedObjects;

TRUE;
FALSE;

/* If the following is FALSE, do not allow user to enter positions
for Z, roll and pitch. Instead, use Autopcsition to compute

TRUE;

/* The following are used by HVE to decide whether vehicles are
{not used in calculations) or
(used in calculations).

*/

CalcMethodHeader .Options.InitialPosIsUsed = TRUE;
CalcMethodHeader.Options.BegPerceptionPosIsUsed = TRUE;
CalcMethodHeader .Options.EndOfRotPosIsUsed = TRUE;
CalcMethodHeader .Options.FinalPosIsUsed = TRUE;

edit dialogs

= FALSE;
ed = FALSE;
ed = FALSE;
ed = FALSE;

Figure 6 - Partial listing of CalcMethodInfo() function written by developer.

the vehicle are parsed out in this function whether
they are Vehicle specific or EventVehicle specific.
There are similar data groups for occupants and
pedestrians, with Human and EventHuman structures.

When writing the physics program in FORTRAN, the
ParseHveInput() function will still be in the C
language, but will pass the variables into the
FORTRAN COMMONSs. Portions of an example are
shown in Figure 5, the complete routines are in
Appendix A & B. There are template files for all of
the required C functions available as part of the HVE
Developer’s Toolkit.[1] These template files make it
easy to set up any program by providing all the
structures, variables, etc. in a standard format that can
be edited by the developer.

CalcMethodInfo() - The CalcMethodInfo() function is
used to describe the calculation method being used.
The HVE environment allows for reconstruction
calculation methods, such as EDCRASH, or for
simulation programs, such as EDSMAC, EDVTS,
EDHIS, etc. This function is used to pass information
back to HVE.

188

There are many types of information about a
program that HVE requires to perform properly.
This information can be broken into three
categories:

1) information about the program
2) data input required or used
3) data output produced

A partial listing of a CalcMethodInfo() function is
shown in Figure 6, with the entire function listed in
Appendix C. This information basically lets HVE
know what type of calculations will be performed
and what options that HVE should allow.

The basic information that HVE needs about the
program is listed below:

Type of program - Reconstruction/simulation
' (human or vehicle)

Number of objects needed by the program

Number of analytical dimensions (2-d or 3-d)

The program will also need information from HVE.
Some of the possible data available is shown in

Figure 6. The HVE environment will use this
information to validate that the required data will be
available for the program.

For instance, if the user selects a vehicle and then
picks a human simulation program, the HVE program
will produce an error indicating that the wrong type of
object has been selected for this simulation program.

Some of the possible program input that HVE needs
to have information about are listed below:

Which "target" positions are used
(Initial, POI, POR, Point of Curve, etc.)
Whether damage data is required
Whether payload data 1s used

Use of braking, steering, throttle tables
Vehicle acceleration pulse

(for human simulators)

The CalcMethodInfo() function also sets up the type
of output that will be expected. HVE then sets up the
appropriate output areas for the program to use and
makes these output reports available for the user to
view in the PlayBack Editor.

For example, if the selected program produces a
vehicle damage diagram, then HVE will set up the
necessary graphic images, etc. Some of the possible
program output categories are shown in Figure 7.
These options are selected with a TRUE or FALSE
assignment in the CalcMethodInfo() function, as
shown in the partial listing in Figure 8.

Accident History

Damage Data

Damage Profiles (graphical)
Vehicle Acceleration Pulse
Human Motion Data

Human Injury Data

Momentum Diagrams (graphical)
Program Data

Site Drawing (graphical)
Trajectory Simulation (3-d visualization)
Variable Output

Vehicle Data

Figure 7 - Some possible program output that
can be identified in CalcMethodInfo().

When a program is written in FORTRAN, a simple
template file can be used to pass this information to
HVE. Because the FORTRAN program will not
have to interface with the CalcMethodInfo()
function, it is convenient to simply use a C template
file such as that shown in Appendix C.

It 1s important to understand that indicating to HVE
that one, or more, of these output reports will be
available does not put the data there. All that is
accomplished here is telling HVE which output
reports should be made available to the user while
in the Playback Editor. It is still up to the developer
to place the data in these output reports... so far the
program has simply promised HVE that it will be
done.

CalcMethodHeader .Options.AccidentHistory = TRUE;
CalcMethodHeader .Options.DamageData = FALSE;
CalcMethodHeadexr .Qptions .DamageProfiles = FALSE;
CalcMethodHeader.Options.HumanData = FALSE;
CalcMethodHeader.Options.InjuryData = FALSE;
CalcMethodHeader .Options.Messages = TRUE;
CalcMethodHeader .Options.MomDiagramDamage = FALSE;
CalcMethodHeader .Options.MomDiagramScene = FALSE;
CalcMethodHeader .Options.ProgramData = TRUE;
CalcMethodHeader .Options.Results = FALSE;
CalcMethodHeader.Options.SiteDrawing = FALSE;
CalcMethodHeader.Options.TrajSimulation = TRUE;
CalcMethodHeader .Options.VariableOutput = TRUE;
CalcMethodHeader .Options.VehicleData = FALSE;

Figure 8 - Partial listing of CalcMethodInfo() showing the selection of output reports.

189

SelectVehicleOutputTrackVars() and
SelectHumanOutputTrackVars() - Running a
simulation or other physics program would not yield
much insight without being able to analyze the output
from these programs. The output tracks in HVE
contain the time-dependent data produced by the
simulation program.

In order for HVE to have this data available, the
executable program must identify what data will be
sent back to HVE. Part of this is accomplished in
CalcMethodInfo(), as described above.

The CalcMethodInfo() function is simply used to tell
HVE what types of data will be available so that
appropriate output reports are available, the variables
in the functions SelectVehicleOutputTrackVars() and
SelectHumanOutputTrack Vars() are where the
specific data, that will be sent back to HVE, is
identified. Also note that the only data that is affected
by these two functions (Select..Vars) is the data that is
available in the VariableOutput Table.

The special property of all elements in the
VariableOutput table is that they are all
time-dependent and can easily be plotted, printed, etc.
for documentation purposes while in the Playback
Editor.

There are three possible choices for each of the
variables in the VariableOutput Table:

1) NOT_USED is the default and indicates that
this entry will not be in the table.

2) NOT_EDITABLE indicates that the entry
will be in the table but can not be changed or
edited.

3) EDITABLE indicates that the entry will
appear in the table and can be edited by the
HVE user while viewing the entry in the
Playback Editor.

Recall that in the CalcMethodInfo() function the
user defines what types of data will be available to
HVE. All this really does is tell HVE to allow the
user to select this type of output while in the
Playback Editor. One of the possible areas
available is the VariableOutput Table. In order to
place data in the VariableOutput table, it must be
specifically identified in the variables inside the
functions SelectVehicleOutputTrackVars() or
SelectHumanOutputTrackVars().

An example of this is shown in the partial listings in
Figure 9 and Figure 10 with the entire listings
available in Appendix D and E, respectively. As
before, these files can be used as templates and will

VehicleOutputSetup[i]
VehicleOutputSetup[i]
VehicleOutputSetup{i]
VehicleOutputSetup[i]
VehicleOutputSetup[i]
VehicleOutputSetup[i]
VehicleOutputSetup[i]
VehicleOutputSetup[i]

.VehKinematics[0]
.VehKinematics[1]
.VehKinematics[2]
.VehKinematics (3]
.VehKinematics[4]
.VehKinematics[5]
.VehKinematics[6]
.VehKinematics[7]

= NOT_EDITABLE; /* "X_CG"*/

= NOT_EDITABLE; /* "Y_CG"*/

= NOT_EDITABLE; /* "Z_CG"*/

= NOT_EDITABLE; /* "Roll"*/

= NOT_EDITABLE; /* "Pitch"*/

= NOT_EDITABLE; /* "Yaw"*/

= NOT_USED; /* "PathRad"*/
= NOT_EDITABLE; /* "Nu"*/

Figure 9 - Partial listing of SelectVehicleOutputTrackVars().

HumanOutputSetup[i]
HumanOutputSetup(i]
HumanOutputSetup[i]
HumanOutputSetup([i]
HumanOutputSetup[i]
HumanOutputSetup[i]

.HumKinematics{3j][0]
.HumKinematics[j][1]
.HumKinematics[j][2]
.HumKinematics[j] [3]
.HumKinematics [j][4]
.HumKinematics [j] [5]

= NOT_EDITABLE; /* "X _CG"*/
= NOT_EDITABLE; /* "Y_CG"*/
= NOT_EDITABLE; /* "Z_CG"*/
= NOT_EDITABLE; /* "Roll"*/
= NOT_EDITABLE; /* "Pitch"*/
= NOT_EDITABLE; /* "Yaw"*/

Figure 10 - Partial listing of SelectHumanOutputTrackVars().

190

not need to be entirely re-written by a developer with
each program. Figure 11 lists the Output Groups
available in HVE.

For example, if you wish to include the vehicle
x-position in the VariableOutput Table; you must
include the following line in the CalcMethodInfo()
function:

CalcMethodHeader.Options. VariableOutput = TRUE:

In addition, the following line would be required in
the SelectVehicleOutputTrackVars():

VehicleOutputSerup({i]. VehKinematics[0] = NOT_EDITABLE

The data would then be passed to the output report in
the main physics routine, or an output subroutine.
This is shown later in the paper.

ExecuteCalcMethod() - This is the function that
contains the actual physics algorithm. In most cases
the ExecuteCalcMethod() function contains several
calls to other functions, such as InitilizeData(),
ComputeVel(), etc. that actually contain the physics
equations. In general, all the physics calculations take
place through ExecuteCalcMethod(). whether all
these equations reside in this function or other
functions that are called by ExecuteCalcMethod().

The ExecuteCalcMethod() function in an HVE
FORTRAN program is where execution is turned
over from the C portion to the FORTRAN portion.
This is also where it is convenient to send data back
to HVE from the FORTRAN program.

Recall that the set up for passing data back to HVE
was in the SelectVehicleOutputTrackVars() for
vehicle data and the SelectHumanOutputTrackVars()
for data from a human simulation program. In order
to send data back to HVE from the executing
program, the data is loaded into the output tracks (a
data structure set up to send data back to HVE).
Recall the example of sending the vehicle x-position
from the executing program to HVE (discussed in the
section above); in this example, the following line of
code would appear in ExecuteCalcMethod() (or a
function called by ExecuteCalcMethod()):

VehicleOutputTrac[0]. VehKinematics[0] = xposn

N

Vehicle Occupant
Kinematics Kinematics
Kinetics Joints
Tires Contacts
Wheels Belts
Connections Airbags
Drive Train
Driver
Contacts
Belts
Airbags

Figure 11 - List of Output Groups in HVE.

Once all the output tracks are "loaded” with
appropriate data, a call is made to another HVE
function: SendHveOutput(), which actually sends
the data in each of the output tracks back to HVE.

Usually a developer will perform all the calculations
in a FORTRAN subroutine and then use another C
function (called from ExecuteCalcMethod()), such
as WriteOutput(), to send the data back to HVE.
The developer can either store this time-dependent
data in arrays and process the data all at once at the
end, or set up the program so that the appropriate
data is sent back to HVE with each time iteration.
The second option is preferable, in that it keeps the
HVE rendered image in step with where the physics
program is in time. An example of using data
arrays is included in Appendix A, F, and G.

OTHER OUTPUT REPORTS - There are other
functions and methods available to place data in the
other output areas identified in the function
CalcMethodInfo(). These other output reports
consist of both graphical and numerical/text reports.
There are several utility functions available from
HVE that allow the developer to quickly produce
output reports.

Some of the code to produce text output reports is
shown in Figure 12. Note that there are no strict
guidelines for what specific data goes to which
report, but the developer is encouraged to place the
data in the most appropriate output report.

/* ACCIDENT HISTORY*/

if ((retval = hve_open_page(ORAccidentHistory, 0)) < 0) {
DB(fprintf (stderr,"Could not open report ORAccidentHistory\n"));
/* Calling HVEShutDown here ensures that the error message */
/* will get thru and hve will not die */
HveShutdown (retVal) ;
return (retval);
}

hve_center_name (MaxVeh, nameBuff, "ACCIDENT HISTORY") ;
hve_string("\n");

hve_string(nameBuff) ;

hve_string("\n\n");

hve_string ("--—=—===-—c-me— e e \n");

himp{il([31/17.6, V_impl[i][3j]1/17.6, R_imp[i]/RAD);
hve_string(buffer);

}
hve_string ("\nSpeed Change, Linear Momentum\n");
hve_string (" Total Fwd Lat PDOF\n") ;

for (I=0;i<MaxVeh;i++) {
sprintf (buffer, "Veh %4 %7.2f mph %7.2f mph %7.2f mph %7.2f
deg\n",I+1, Delvr[i][j]/17.6, Delvx[i][j1/17.6, Delvy[il[3j]/17.6, Pdof[i]}[j]1/RAD);
hve_string(buffer);
}
hve_string ("\nImpact Speed, Damage\n");
j=2;
hve_string (" Total Fwd Lat Angular\n");
for (I=0;i<MaxVeh;i++) {
sprintf (buffer,"Veh %4 %7.2f mph %7.2f mph %7.2f mph %7.2f
deg/sec\n",I+1l, Vtot_imp[i])(j)l/17.6, U_imp[il[3j])/17.6, V_imp[i]1([j}/17.6, R_imp{i]/RAD);
hve_string(buffer);
lretval) ;
}

/* MESSAGES */

if ((retVal = hve_open_page(ORMessages, 0)) < 0) {
DB(fprintf (stderr, "Could not open report ORMessages\n"));
fprintf (stderr, *Could not open report ORMessages\n"):;
HveShutdown (retVal) ;
return (retVval);

}

hve_center_name (MaxVeh, nameBuff, "MESSAGES");

hve_string("\n");

hve_string(nameBuff) ;

hve_string("\n\h; VehNum++)

hve_center_name (MaxVeh, nameBuff, "PROGRAM DATA");
hve_string("\n");

hve_string(nameBuff) ;

hve_string("\n\n");

hve_close_page () ;

Figure 12 - Example of code for additional text output reports.
192

For example, a warning message concerning an error
encountered during program execution could be
located in any of the text reports, but an end user
would probably expect these messages in either the
Messages or Results report.

The graphical output reports, listed in Figure 7, are
extremely easy to set up for the developer. The
program simply needs to place the data in the

appropriate variable names and then HVE canproduce

the graphical images. The developer does not need to
concern themselves with any type of graphical

interface programming. Some examples of coding for

the graphical output reports is shown in Figure 13.

ShutDown() - This is the final developer-written
function. The ShutDown() function is used to write
the final output data, any diagnostic messages., and
any other program data that is not time-dependant to
the output reports. This function then closes down
the physics program and returns control to
HveMain(). An example of the ShutDown() function
that can be used as a template is included in the paper
as Appendix H.

GENERAL DEVELOPER ISSUES

When a user selects an object, for example a car, and
then selects a physics application, such as EDSVS.
HVE calls the physics program and performs a
"verify". This "verify" is used to ensure that the
object can be used with the selected physics program,
that the program does not require additional objects,
and in general determines that this program should be
able to run.

For this to occur, HveMain actually runs
ParseHvelnput() and CalcMethodInfo() to be as
certain as possible that the program will operate
without a major error. Developers then have an
opportunity to check what types of data are being
presented to their programs and refuse to execute the
program if it is not appropriate. For example, when a
user selects a 1988 Chevrolet Camaro from the
vehicle database and then selects EDHIS (a human
dynamic simulator). the program should not be
allowed to proceed past the "verify”, because there is
no human included in the event setup.

193

The other 1tem to be sure and handle as a developer
is the fact that both ParseHvelnput() and
CalcMethodinfo() will run twice, back to back when
the program 1s executed. These functions will run
once during the "verify" and then a second time
when the program is actually started from the Event
Editor. Good programming practice is to initialize
all variables prior to using them, this is a good
reason to do it.

It is also important to realize that during the
"verify", there are no initial positions, orientations,
velocities, etc. The user has not had the opportunity
to enter these data yet because the "vernify" takes
place immediately after pressing the "okay" button
on the Event Information dialog box.

After the program is compiled and linked with the
HVE Developer's Toolkit libraries. the executable
program is simply placed in the directory
"hve/supportFiles/calcMethods/" and it will appear
on the list of physics programs available in the
Event Information dialog.

SUMMARY

The HVE environment is an extremely powerful
tool for use in analyzing motor vehicle collisions.
There are currently many tools available from
Engineering Dynamics Corporation to handle a
variety of simulation requirements, but there are
also many other programs in existence that could
greatly benefit from running under the HVE
environment. The existing FORTRAN programs
can be slightly modified to interface with the HVE
program. Using the HVE programming
environment, developers can concerntrate on the
physics algorithms and not be required to develop a
user interface.

There 1s no practical way around using C when
writing a FORTRAN program for the HVE
environment at this time. However, the large
majority of C program code required is available in
template files that can easily be modified for each
individual program.

It is theoretically possible to interface with HVE
entirely in FORTRAN, but the existing utilities

/* Site Drawing
*/
SiteDrawing.NumVehicles = MaxVeh;

for (VehNum=0; VehNum<MaxVeh; VehNum++)
()

/* Assign vehicle IDs

*/

SiteDrawing.Results[VehNum] .Id = Vehicle[VehNum].Id;

for (i=0; i<MAXPOSITIONS; i++) /* for each possible position...*/

{
if (SiteDrawing.Results{Vehing.Results{[VehNum].PosVel[i].Totalvel
= Vtot_imp [VehNum] [Colisn_typel:

R_imp [VehNum] ;
Beta_imp [VehNum] ;

SiteDrawing.Results [VehNum] .PosVel[i] . YawVel
SiteDrawing.Results [VehNum] . PosVel[i] .SlipAngle
/* break; */

/* case 4 : Separation position (in, rad) */
SiteDrawing.Results[VehNum] .PosVell[i+l] .xVel
SiteDrawing.Results[VehNum] .PosVel [i+1] .yVel
SiteDrawing.Results[VehNum] .PosVel[i+1l].TotalVel
SiteDrawing.Results[VehNum] . PosVel[i+1] .YawVel

U_sep [VehNum] ;
V_sep[VehNum] ;
Sep_vel [VehNum] ;
R_sep [VehNum] ;

break;
case 5 /* Point-on-curve position (in, rad) */
SiteDrawing.Results[VehNum] .PosVel[i] .PosVel[i].YawVel = 0.0;
break;
default
break;

} /* End of switch */
}

}
} /* end of for VehNum */

Figure 13 - Example of code to produce other graphical output reports.
-already written in C simply outweigh any benefit from REFERENCES
using only FORTRAN. As third-party programs are
developed, it might be possible to develop a series of
HVE utilities written in FORTRAN, but it would be
an enormous undertaking to produce all the utilities
that currently exist.

1. Day, T.D., “An Overview of the HVE
Developer’s Toolkit”, SAE Paper No. 940923,
Society of Automotive Engineers, Warrendale, PA,
1994.

2. Day, T.D., “An Overview of the HVE Vehicle
Model”, SAE Paper No. 950308, Society of
Automotive Engineers, Warrendale, PA, 1995.

TRADEMARKS

HVE, EDCRASH, EDSMAC, EDSVS, EDVTS,

EDVDS, EDVS, and EDHIS are trademarks of
Engineering Dynamics Corporation. Windows is a
trademark of Microsoft Corporation.

194

3. Day, T.D., “An Overview of the HVE Human
Model”, SAE Paper No. 950659, Society of
Automotive Engineers, Warrendale, PA, 1995.

4. EDCRASH/HVE Progam Manual, Engineering
Dynamics Corporation, Beaverton, OR, Under
development.

5. EDSMAC/HVE Progam Manual, Engineering
Dynamics Corporation, Beaverton, OR,Under
development.

6. EDSVS/HVE Progam Manual, Engineering
Dynamics Corporation, Beaverton, OR, Under
development.

7. EDVTS/HVE Progam Manual, Engineering
Dynamics Corporation, Beaverton, OR,Under
development.

8. EDVSM/HVE Progam Manual, Engineering
Dynamics Corporation, Beaverton, OR, Under
development.

9. EDVDS/HVE Progam Manual, Engineering
Dynamics Corporation, Beaverton, OR,Under
development.

10. EDHIS/HVE Progam Manual, Engineering
Dynamics Corporation, Beaverton, OR.Under
development.

11. FORTRAN 77 Programmer’s Guide, Silicon
Graphics, Inc., Mt View, CA.

195

Appendix A
FORTRAN program setup for interfacing with HVE

SUBROUTINE FTNCALC
C***
Written by Collision Engineering Assoiates, Inc - Daniel J. Kuhn

- Wesley D. Grimes
Last Update: 11/8/95

Called By: ComputeData{) - A C function

This routine is the Fortran Physics package sample that can be
interfaced with HVE and it's C libraries.

This sample reads HVE's initial settings for the Initial Condition
target position. These settings are:
Initial Positions X,Y,Z, Roll, Pitch, Yaw
Initial Velocity u, v, w and Roll, Pitch and Yaw
Then it applies the velocities using the time step until the end time
is reached. All data is computed in one pass through this routine. The
C function ComputeData() performs the output track loading for all the
data.
******EE***
These are the variable definitions and common blocks that get
shared with the C routines. Data byte sizes that match are crucial
when interfacing

six element arrays provide positions and velocity for components
X, Y, Z, Roll, Pitch, and Yaw respectively

N0 0O0000000000n00N0N0

REAL, POS, VEL, DELTAT, ENDT
COMMON /INIT/ POS(6), VEL(6), DELTAT, ENDT
COMMON /DATA/ N, TIME(200), EPOS(6,200)

the equivelant C structures are as follows...

struct initialVehicleData
{
float pos[6];
float vell6];
float deltaT, endT;
Yinit_;

struct eventData
{
int n;
float tim({2001;
float pos[200]1(6€];
}data__;

o i s - e e - T - ———— —— = — ———— ——— ——a—

NnNoOoOOnNOOONONOO0OOO0O0N00O000

---- First position is the same as the intitial condition --

TIME(1) = 0

EPOS(1,1) = POS(1)
EPOS(2,1) = POS(2)
EPOS(3,1) = POS(3)
EPOS(4,1) = POS(4)
EPOS(5,1) = POS(5)
EPOS(6,1) = POS(6)

——————————— LISTING CONTINUES ON FOLLOWING PAGE --—--———-—-——---

196

~

0O N

-- CONTINUED LISTING OF FORTRAN PROGRAM IN APPENDIX A ———~--

-- I = counter for number of points in array --

“ = <
--- Loop for the reast of the time computing next position ---
---- This is where any REAL physics model calculations would go
DC 10C T = DELTAT, ENDT, DELTAT
TIME(I) = T
DO 150 IPOS = 1, 6
EPOS(IPOS,I) = EPOS(IP0S,I-1) + VEL(IPOS)*DELTAT
CONTINUE
I =1I=+1
CONTINUE

————— Load the number of array elements into common for use in C ----—

RETURN
END

197

Appendix B
EXAMPLE OF ParseHveInput()

INT ParseHveInput (void)

{
/* Assigns input data used by FORTRAN Example
Called by: HveMain()
Calls: (none)

*/
/* Structures defined in header files */
INT DataError

numVehicles =
numHumans = 0;

0 /* return flag */

1; /* hard code objects*/

[* mmmmmm e — e get info on objects setup in HVE -----—--—--
————————————————————— for this program -=—=--=—-—----—c—c—-ce———--%/

/* put error checking of file definition vs HVE definition here */

if (Event.Info.NumSelectedVehicles != numVehicles)
{
DataError = ERROR_NUM_OBJECTS_NOT_COMPATIRBLE;
printf("Data file contains %i vehicles and HVE has %i
defined.\n",numVehicles, Event.Info.NumSelectedVehicles) ;
}
else if (Event.Info.NumSelectedHumans != numHumans)
{
DataError = ERROR_NUM_OBJECTS_NOT_ COMPATIBLE;
printf("Data file contains %i humans and HVE has %i
defined.\n",numHumans, Event . Info.NumSelectedHumans) ;
}

if (DataError != 0) return DataError;

/* Assign interface variables.
assume initial position for 1lst vehicle velocity specified */

init_.pos[0]
init_.pos{1]
init_.pos[2]
init_.pos[3]
init_.pos[4]
init_.pos[5]

EventVehicle[0] .PosVel[0] .XPos;
EventVehicle[0] .PosVel[0].YPos;
EventVehicle[0] .PosVel[0].ZPos;
EventVehicle[0] .PosVel[0] .RollOrient;
EventVehicle[0] .PosVel([0].PitchOrient;
EventVehicle[0] .PosVel[0] .YawOrient;

init_.vellO0]
init_.vel{l}
init_.vell[2]
init_.vell3)]
init_.vell4]
init_.vell5]

EventVehicle[0] .PosVel[0] .xVel;
EventVehicle[0] .PosVel [0] .yVel;
EventVehicle[0] .PosVel[0].zVel;
EventVehicle[0] .PosVel[0] .RollVel;
EventVehicle[0].PosVel[0] .PitchVel;
EventVehicle[0] .PosVel[0] .YawVel;

wonowownu

init_.deltaT = Event.Info.SimControls.dtOutput;
init_.endT = Event.Info.SimControls.Tmax;

return DataError;

} /* End of ParseHveInput() */

198

Appendix C
EXAMPLE OF CalcMethodInfo()

Jal oy

unction: CalcMethodInfol() Version 1.0 Source Code Listing

Copyright 1993, Engineering Dynamics Corporation
A1l Rights Reserved.

" CalcMethodInfo (void)

/* Sets up the truth table for HVE edit options.

* ’,’

e LOCAL VARIABLES -—---—r=-mommm e e

SHORT 1i,7,k; /* Local indices

CalcMethodHeader .NumObjects = Event.Info.NumSelectedObjects;
CalcMethodHeader .Options.IsSimulation = TRUE;
CalcMethodHeader .Options.IsReconstruction = FALSE;

/* If the following is FALSE, do not allow user to enter positions

for Z, roll and pitch. Instead, use Autoposition to compute

the values.
*/

CalcMethodHeader.Options.ThreeDPosVel = TRUE;

/* The following are used by HVE to decide whether vehicles are

shown as translucent "targets" (not used in calculations)
as normally rendered vehicles (used in calculations).

-

CalcMethodHeader.Options.InitialPosIsUsed = TRUE;

CalcMethodHeader .Options.BegPerceptionPosIsUsed = TRUE;
CalcMethodHeader .Options.BegBrakingPosIsUsed = TRUE;

CalcMethodHeader .Options. ImpactPosIsUsed = TRUE;

CalcMethodHeader .Options. SeparationPosIsUsed = TRUE;
CalcMethodHeader.Options.PointOnCurvePosIsUsed = TRUE;
CalcMethodHeader .Options.EndOfRotPosIsUsed = TRUE;
CalcMethodHeader .Options.FinalPosIsUsed = TRUE;

/* The following tell HVE to make the following edit dialogs
available in Event mode.

* /

CalcMethodHeader .Options.DamageDataDlgIsUsed = FALSE;
CalcMethodHeader .Options .PavioadXIsUsed = FALSE;
CalcMethodHeader .Options.PayloadYIsUsed = FALSE;
CalcMethodHeader .Options.PayloadZIsUsed = FALSE;
CalcMethodHeader .Options.PayloadRollIsUsed = FALSE;
CalcMethodHeader .Options.PavloadPitchIsUsed = FALSE;
CalcMethodHeader.Options.PayloadYawIsUsed = FALSE;
CalcMethodHeader .Options.ThrottleWOTIsUsed = FALSE;

CalcMethodHeader.Options.ThrottleTractiveEffortIsUsed = FALSE;

CalcMethodHeader .Options.ThrottleFrictionIsUsed = FALSE;

CalcMethodHeader .Options.BrakesPedalForcelsUsed = FALSE;
CalcMethodHeader .Options.RrakesWheelForcelsUsed = FALSE;
CalcMethodHeader.Options.BrakesFrictionIsUsed = FALSE;

CalcMethodHeader .Options .WheelDataDlgIsUsed = FALSE;
CalcMethodHeader .Options .GearTableDlgIsUsed FALSE;
CalcMethodHeader .Options.SteerAtStrgWheelIsUsed FALSE;
CaicMethodHeader .Options.SteerAtTiresIsUsed = FALSE;
CalcMethodHeader .Options.CollisionPulseDlgIsUsed= FALSE;

i

it

CalcMethodHeader .Options.ProducesCollisionPulse = FALSE;
CalcMethodHeader.Options.RBeltRestraintsIsUsed = FALSE;
CalcMethodHeader .Options.AlrbagRestraintsIsUsed = FALSE;
CalcMethodHeader.Options.ContactsDlgIsUsed = FALSE;

———————— LISTING CONTINUES ON FOLLOWING PAGE -—-——=——-——-—

199

CONTINUED LISTING OF CalcMethodInfo() IN APPENDIX C

/* The following tell HVE to make the following
available in Playback mode.

output dialogs

*/

CalcMethodHeader .Options.AccidentHistory = TRUE;

CalcMethodHeader.Options.DamageData = FALSE;
CalcMethodHeader .Options.DamageProfiles = FALSE;
CalcMethodHeader.Options.HumanData = FALSE;
CalcMethodHeader .Options.InjuryData = FALSE;
CalcMethodHeader.Options .Messages = TRUE;

CalcMethodHeader.Options .MomDiagramDamage = FALSE;
CalcMethodHeader .Options .MomDiagramScene = FALSE;
CalcMethodHeader.Options.Programbata = TRUE;

CalcMethodHeader.Options.Results = FALSE;
CalcMethodHeader.Options.SiteDrawing = FALSE;
CalcMethodHeader.Options.TrajSimulation = TRUE;

CalcMethodHeader.Options.VariableQutput = TRUE;

CalcMethodHeader .Options.VehicleData = FALSE;

/* Set up objectIDs for NumObjects (includes main segments only!)
*/

j = 0;
for (i=0;

{

i<CalcMethodHeader .NumObjects; i++)

CalcMethodHeader.Object[i] .ObjectID
= Event.Info.SelectedObjectIDs[j++];

for (k=0;
{

k<NumSubSegs[i]; k++)

/* For each main segment, which subsegment are
attached to it?
*/
CalcMethodHeader .Object{i] .WhichIDs [k]
= Event.Info.SelectedObjectIDs[j++1];

/* FOR HUMAN SIMULATORS ONLY! (otherwise,
What is coordinate system of main segment? All segments are
initialized (-1L) relative to earth. However, human occupants
are positioned relative to vehicle. (Following logic assumes

only one human and vehicle.)

if (IsHuman(CalcMethodHeader.Object[i].0ObjectID))

{
if (IsOccupant)
{

comment the following out)

CalcMethodHeader .Object[i] .RelativeCoordSystemID = Vehicle[0].Id;

}
}
*/

} /* end of set-up object IDs */
return 0;

}

/* End of CalcMethodInfo()

*/

200

Appendix D
EXAMPLE OF SelectVehicleOutputTrackVars()

/ *

SHORT
‘f

Function:

Copvright 1993,
2411 Rights Reserved.

SelectVehicleOutputTrackVars ()

Version 1.0 Source Code
Engineering Dynamics Corporation

SeiectVehicleOutputTrackVars (SHORT NumVehicles)

/* Sets up the HVE vehicle output tracks.

GLOBAL VARIABLES

VehicleOutputTrackSetup VehicleOutputTrack [MAXVEHICLES];
Cutput track data setup structure

SHORT 1i,3j.k,1;

/

/* Define

or

o rh ot

(1=0;

/* Set up correct ID
VehicleOutputSetup[i]
/* Position */
VehicleOutputSetup[i]
VehicleOutputSetup[i]
VehicleOutputSetup (i)
VehicleOutputSetup[i]
VehicleOutputSetupli]
VehicleOutputSetup{i]
VehicleOutputSetup(i]
VehicleOutrputSetup[i]
/* welocity */
VehicleOutputSetup(i]
VericleOutputSetup(i]
VehicleOutputSetup[i]
VehicleOutputSetup[i]
VehicleOutputSetup[i]
VehicleOutputSetup[i]
VehicleOutputSetup(i]
VehicleOutputSetupi]
VehicleOutputSetup(i]
VehicleOutputSetup[i]
/* acceleration */
VehicleOutputSetup(i]
VehicleOutputSetupl[i]
VehicleOutputSetupl[i]
VehicleOutputSetup[i]
VehicleOutputSetup[i]
VehicleOutputSetup[i]
VehicleOutputSetuplil
VehicleOutputSetup[i]
VehicleOutputSetup(i]
VehicleOutputSetup(i]
VehicleOutputSetup{i]
VehicleOutputSetupli]

i<NumVehicles;

1++)

*/

Id =

.VehKinematics [0]
.VehKinematics([1]
.VehKinematics[2]
.VehKinematics{[3]
.VehKinematics[4]
.VehXinematics[5]
.VehKinematics|[6]
.VehKinematics{7]

.VehKinematics{8]

.VehKinematics[9]

.VehKinematics[10]
.VehKinematics{11]
.VehKinematics{12]
.VehKinematics[13]
.VehKinematics[14]
.VehKinematics[15]
.VehKinematics[16]
.VehKinematics[17]

.VehKinematics[18]
.VehKinematics[19]
.VehKinematics{20]
.VehKinematics[21]
.VehKinematics[22]
.VehKinematics[23]
.VehKinematics[24]
.VehKinematics[25]
.VehKinematics[26]
.VehKinematics[27]
.VehKinematics[28]
.VehKinematics[29]

201

LOCAL VARIARLES
Number of wvehicles
LOCAL VARIABRLES /
/* Vehicle, axle, side & dual tire indices*/

Listing

output variables for each wvehicle.

Vehicle[i] .Id;

il

1}

I

H

NOT_EDITABLE; /~

NOT_EDITABLE; /*
NOT EDITABLE; /*
NOT_EDITABLE; /*
NOT_EDITABLE; /*
NOT_EDITABLE; /*
NOT_USED; /*
NOT_EDITABLE; /*
NOT_EDITABLE; /*
NOT _EDITABLE; /*
NOT_EDITABLE; /*
NOT_EDITABLE; /*
NOT_EDITABLE; /*

= NOT_USED; /*
NOT_USED; /*

= NOT_EDITABLE; /*
NOT_EDITABLE; /*
NOT_EDITABLE; /*
NOT_EDITABLE; /*
NOT_EDITABLE; /*
= NOT_EDITABLE; /*
= NOT_EDITABLE; /*
NOT_USED; /=
= NOT_USED; /*
NOT_USED; J*
NOT_USED; /*
NOT_EDITABLE; /*
NOT_EDITABLE; /*
NOT_EDITABLE; /~*
NOT_USED; /*

LISTING CONTINUES ON FOLLOWING PAGE

"X_CG"*/
"Y_CG"*/
"Z_CG"*/
"Roll"*/
"Pitch"*/
"Yaw"*/
"PathRad"*/
"Nu'*/

"Viotal"*/
"Beta"*/
"uvel” (Long)
“vvel" (side)
"wvel”
"fwdvel" */
"latvel"*/
"rolivel"*/
"pitchvel"*/
"vawvel"*/

*/

"Atotal"*/
"udot" */
"vdot"*/
"wdot " */
"Ifwdacc"*/
"latacc"*/
"tangacc"*/
"centacc"*/
"pdeott */
"gdot"*/
"rdot"*/
"KTtrans"*/

—~—- CONTINUED LISTING OF SelectVehicleOutputTrackVars() IN APPENDIX D --

VehicleOutputSetup[i] .VehKinematics[30]
VehicleOutputSetup[i] .VehKinematics[31]

NOT_USED; /* "KTrotn"*/
NOT_USED; /* "KTtotal"*/

/* The following output groups are wheel-dependent */

/* Tire Group {(tire location, forces and moments)
NOTE: ' indicates tire reference frame which has its origin at
the center of the tire contact patch. x' axis is at angle, delta,
relative to the vehicle x axis. z' is normal to the road
plane and y' is orthogonal to x' and z'.
*/
for (j=0; j<Vehicle[0].NumAxles; j++) {
for (k=0; k<2; k++) { /* 0 left & right sides */
for (1=0; 1l<1+(SHORT)Vehicle[i].Wheel[j][j].Tire.IsDual; 1l++) {
/* 1 = 2 for dual tires */

VehicleOutputSetup{il] .TireData[j][k]1[1]1[0] = NOT_USED; /* x */
VehicleOutputSetup({il] .TireData[j]l (k] [1][1] = NOT_USED; /* y */
VehicleOutputSetup[i] .TireDatal[j](k1[1][2] = NOT_USED; /* z */
VehicleOutputSetup[i] .TireData[j] [k][1][3] = NOT _USED; /* X */
VehicleOutputSetup[il.TireDatalj][k][1][4]) = NOT_USED; /* Y */

VehicleOutputSetup[i] .TireData[j][k][1]1[5] = NOT_USED; /* Z */
VehicleOutputSetup[i] .TireDataljl[k][1]1[6] NOT_USED; /* Fx'*/
VehicleOutputSetup[i] .TireDatal[j) [k][1]1[7] NOT_USED; /* Fy'*/
VehicleOutputSetup[i] .TireData[j][k][1][8] NOT_USED; /* Fz'*/
VehicleOutputSetup[i] .TireData[j]l [k] [1]1[9] NOT_USED; /* Mx'*/
VehicleOutputSetup[i] .TireData{j]} [k][1]1[10] NOT_USED; /* My'*/
VehicleOutputSetup[il .TireData[j] [k]1[1][11] NOT_USED; /* Mz'*/
VehicleOutputSetup[i] .TireDatalj] (k] [1]1[12] NOT_USED;

/* loaded tire rad*/

VehicleOutputSetup{i] .TireData[j]l[k]1[1]1[13] = NOT_USED;

/* long tire slip */

VehicleOutputSetup(i] .TireData[j][k]1[1][14] = NOT_USED;

/* slip ang,alpha */

VehicleOutputSetup[i] .TireDatal[j] [k] [1][15] = NOT_USED;
/* skid £fig*/

VehicleOutputSetup(i] .TireData[j]l [k][1]1[{16] = NOT_USED;
/* scuf f£lg*/

} /* next tire

/* Wheel Group (kinematics & forces) relative to

vehicle-fixed coordinate system

*/

/* position of wheel center */
VehicleOutputSetupl[i] .WheelDatalj] (k] [0]
VehicleOutputSetup[i] .WheelDatalj][k][1]
VehicleOutputSetup[i] .WheelData{j] (k] [2]
VehicleOutputSetup[i] .WheelDatalj] (k] [3]

NOT_EDITABLE; /*x */
NOT_EDITABLE;/*y */
NOT_EDITARBRLE;/*z */
NOT_EDITABLE;

/* cmbr ang*/
NOT_EDITABLE;

/* spin ang*/
VehicleOutputSetup[i] .WheelData{j] [k][5] = NOT_EDITABLE;

/* delta, steer ang*/

VehicleOutputSetupl[i] .WheelDatal[j] [k][4]

/* velocity */

VehicleOutputSetup{i] .WheelDatalj] [k][6] NOT_USED; /* xdot*/

VehicleOutputSetup([i] .WheelData{jl[k][7] NOT_USED;
/* gamma-dot */
VehicleOutputSetup{i) .WheelData{j][k][8] = NOT _USED;

/* angular veloc about spin axis */

/* acceleration */
VehicleOutputSetup[i] .WheelData[j][k]1{9] = NOT_USED;/*xddot*/
/* normal accel of wheel ctxr */
——————————— LISTING CONTINUES ON FOLLOWING PAGE ---==—==—~——

202

-- CONTINUED LISTING OF SelectVehicleOutputTrackvVars() IN APPENDIX

VehicleOQutputSetup[i] .WheelData[j][k]1[10] = NOT_USED;
/* gamma-ddot */
VehicleOutputSetup[i] .WheelData[j][k][11] = NOT_USED;

/* angular accel about spin axis */

/*forces */
VehicleOutputSetup[i] .WheelData[j][k][12] = NOT_USED; /* Fx */
VehicleOutputSetup[i] .WheelDatalj] [k] [13] NOT_USED; /* Fy */
VehicleOutputSetup([i] .WheelData[j]l[k][14] = NOT_USED; /* Fz */

i

/* suspension deflection and forces */

VehicleOutputSetup(i] .WheelData{j] [k]{15] = NOT_USED;
/* wheel deflection from eguilibrium */
VehicleOQutputSetup(i] .WheelData[j][k][16] = NOT_USED;

/* wheel deflection rate */

/* spring force (at wheel) */
VehicleOutputSetup{i] .WheelDatal[j][k][17] = NOT_USED; /* Fz */

/* damping force (at wheel) */
VehicleOutputSetup(i] .WheelData{jl [k} [18]

1}

NOT_USED; /* Fz */

/* antipitch force (at wheel) */
VehicleOutputSetup(i] .WheelData[j][k]1[18] = NOT_USED; /* Fz */

/* Results of driver controls {(attempted throttle and

brake torque, and steer angle at each wheel)

* 7
/

/

/* Drive torgue about spin axis */

VehicleOutputSetup(i] .WheelData[j] [k1[20] = NOT_USED;
/* Brake torque about spin axis */
VehicleOutputSetup[i] .WheelData[j] [k] [21] = NOT_USED;
/* Brake pressure at wheel */
VehicleOutputSetup{i] .WheelDatalj] [k][22] = NOT_USED;
/* Brake temperature at wheel */
VehicleOutputSetup[i] .WheelData{j] (k]1{23]1 = NOT_USED;

/* steer angle (delta) at wheel */
/* See wheel position, variable No. 5 */

} /* next side */
} /* next axle */

/* Sprung Mass Connections Group (position, orientation,
forces & moments for an articulated object)
Note that each vehicle can be towed by only one
vehicle; thus, only one set of data is required
per towed vehicle!
Angles are relative to tow vehicle.
/* orientation */
VehicleOutputSetup[i] .Connection|0] NOT_USED; /* roll artic
VehicleOutputSetup(i] .Connection{li] = NOT_USED; /* pitch artic */
VehicleOutputSetup(i] .Connection{2] NOT_USED; /* vaw artic /

o~

*

1]

————————————— LISTING CONTINUES ON FOLLOWING PAGE —-====--=====

203

/* velocity */

VehicleOutputSetup[i] .Connection[3]
VehicleOutputSetup[i] .Connection[4]
VehicleOutputSetupl[i] .Connection[5]

/* acceleration */

VehicleOutputSetup{i] .Connection[6]
VehicleOutputSetup([i] .Connection([7]
VehicleOutputSetup[i] .Connection[8]

/* connection forces and moments */

VehicleOutputSetup[i] .Connection[9]

VehicleOutputSetup[i] .Connection[10]
VehicleOQutputSetup[i] .Connection{11]
VehicleQutputSetup[i] .Connection[12]
VehicleOutputSetup[i] .Connection{13]
VehicleOutputSetup[i] .Connection{14]

o

/*
/*
/*

NOT_USED;
NOT_USED;
NOT_USED;

/*
/*
/*

NOT_USED;
NOT_USED;
NOT_USED;

NOT_USED; /*
NOT_USED; /*
NOT_USED; /*
NOT_USED; /*
NOT_USED; /*
NOT_USED; /*

-— CONTINUED LISTING OF SelectVehicleOutputTrackVars() IN APPENDIX D --

roll artic vel */
pitch artic vel*/
yvaw artic vel */

roll art accel */
pitch art accel*/

/* Drivetrain Group (engine, transmission, differential) */

/* engine */

VehicleOutputSetup[il] .Drivetrain[0]
VehicleOutputSetup([i] .Drivetrain(1]
VehicleOutputSetupli] .Drivetrain[2]

NOT_USED; /*
NOT_USED; /*
NOT_USED; /*

/* transmission and differential gear ratios */
NOT_USED; /*trans gear ratio*/
NOT_USED; /*diff gear ratio */

VehicleOutputSetup([i] .Drivetrain(3]
VehicleOutputSetup[i] .Drivetrain(4]

/* Driver Controls Group (throttle, brake, gear,

VehicleOutputSetup[i]
VehicleOutputSetup[i]
VehicleOutputSetupli]
VehicleOutputSetup([i]
VehicleOutputSetup([i]
VehicleOutputSetup[i]

.Drivexr[0]
.Driver([1l]
.Driver(2]
.Driver([3]
.Driver(4]
.Driver (5]

NOT_USED; /*
NOT_USED; /*
NOT_USED; /*
NOT _USED; /*
NOT_USED; /*
NOT_USED; / *

steering)

vaw art accel */
Fx connection */
Fy connection */
Fz connection */
Mx connection */
My connection */
Mz connection */
engine speed */
engine power */
engine torque */

*/
throt position */
brk pedal force*/

brk sys press */
trans gear no. */
diff gear no. */

steer wheel ang*/

} /* End for i */
printf ("Exiting AtbLink routine - SelectVehicleOutputTrackVars()\n");

return 0;
} /* End of SelectVehicleQutputTrackVars() */

204

Appendix E
EXAMPLE OF SelectHumanOutputTrackVars ()

/> Function: SelectHumanOutputTrackVars () Version 1.0 Source Code Listing
Copvright 1993, Engineering Dynamics Corporation
412 Rights Reserved.

INT Se_ectHumanOutputTrackVars (SHORT NumHumans)

/* Sets up the HVE vehicle output tracks.

Called By: OutputTrackSetup () (hvemain.c)
Calls: (none)
K e e e GLOBAL VARIABLES —=-—--mmmm e oo —

HumanCutputTrackSetup HumanOutputTrack [MAXVEHICLES] ;
Output track data setup structure
—————————————————————————— LOCAL VARIABLES ---=—==—=—mmmmmme e

SHORT NumHumans ; Number of humans
—————————————————————————— LOCAL VARIABLES —==--====m=-————mmem%/
INT DataError = 0; /* Error flag returned to caller */
L K o e e e e e e e e o — — —— o — ——— o —— —— o o1+ — —— o mn o — o~ — o o o~ o o o e */
INT 1,735

* Define output variables for each Human.

return 0;
for (1=0; i<NumHumans; i++)
f

/* Set up correct ID */

HumanOutputSetup[i] .Id = Human{il.Id;

/* Position */

for (3=0; j<numSegments{i]; Jj++)

.
HumanOutputSetup[i] .HumKinematics[j] [0] = NOT_EDITABLE; /* "X_CG"*/
HumanOutputSetup i) .HumKinematics[j][1] NOT_EDITABLE; /* "Y_CG"*/
,LmanOutputSetup[11.HumKinematics[j][2] NOT_EDITABLE; /* "Z_CG"*/
umanCutputSetup(i] .HumKinematics[j] [3] NOT_EDITABLE; /* "Roll"*/

fumanOutputSetup[i] .HumKinematics[j] [4] NOT_EDITABLE; /* "Pitch"*/

HumanOutputSetup[i] .HumKinematics[31[5] = NOT_EDITABLE; /* "Vaw"=*/

)4:1
o

Ih

oxr (J=0; j< MAXHVEJOINTS; j++)

=

HumanOutputSetup[i].Joints[j][0] = NOT_EDITABLE;

HumanOutputSetupii] .Joints[3]1{1] = NOT_EDITABLE;

HumanOutputSetup{i].Joints[ji[2] = NOT_EDITABLE;
return DataError; /* No Humans 1in GeneralAnalysis */

&3]
ol
th

nad of SelectHumanOutputTrackVars () */

205

Appendix F
EXAMPLE OF ExecuteCalcMethod ()

/* ___
Structure for time positions of vehicle - used to interface with
fortran common of same name */
struct eventData

{
int n;
float tim[200];
float pos[200]1[6];
}data_;
/* __ */

extern struct VehicleData *Vehicle;

INT ExecuteCalcMethod()
{

/* ... Function that initializes and executes GeneralAnalysis.
Called by: HveMain
Function Calls: Initialize()
ComputeData ()
*/

Initialize();
ComputeData () ;

} /* End of ExecuteCalcMethod() */

/* The following is where the initialization of variables would be placed if
it was required...in this example this function does not have any code in it.
It is simply listed to show the process */

void Initialize(void)

{
/* Function that initializes program variables.
Called by: ExecuteCalcMethod ()
Function Calls: (none)

*/

7

} /* End of Initialize() */

206

Appendix G
EXAMPLE OF ComputeDatal)

void ComputeData (void)

r
S

/*¥ This is the main calculation function of FortranProg.

Called by:
Function Calls:

——————————————————————————— LOCAL VARIABLES =---=-—===-—==—m—c—————%/

INT istop;

INT 1,3.k;
/’*
INT hstop: /*
INT numInBuff; /*
INT stat; /*
INT nveh;

ExecuteCalcMethod ()
ftncalc_() - a FORTRAN function

WritevVehicleOutput ()

/*

pro

SendHveOutput () */
Global error flag

Local indices

K GLOBAL VARIABLES —-=-=-—=-—===———————me-

gram error kev for sending HVE output tracks */
interpolation buffer - number in array to use */
local status variable for monitoring file I/0 */

struct MyVehicleStructure veh[MAX NUM _VEHICLES]:
struct MyHumanStructure hum[MAXHUMANS] ;
ftncalc_() is a FORTRAN function which computes an array of wvehicle

postions as a function of time.

All based on the initial conditions set */

ftncalc_(); /* call fortran program to perform physics */

/* loop and load resulting data into output tracks */

nveh =

= 0;
for (1=0; i<data_.n; i++)

I3
{
L

/* vehicle CG position and orientation */

veh[nveh] .s[0] =
veh([nveh] .s[1] =
veh[nveh] .s[2]
veh[nveh] .s[3]
veh[nveh] .s[4] =
veh[nveh] .s[5] =

data_
data_
data_

data

data_

data

/* Wheels and tires £
for (3=0; j<2; J++)

.pos[il[0]; /* x */
.pos[il[1]; /* yv */
.pos (i} {2]); /* z */
_.pos[i}[3]; /* roll */
.pos[il[4]; /* pitch =~/
_.posiili5}; /* vaw */

or vehciel */

for (k=RIGHT; k<=LEFT; k++)

{

/* —-—— wheel hub data --- positions relative

veh[nveh] .wheel[]
veh [nveh] .wheel [j
veh[nveh] .wheel{j][k][2]

to the vehicle cg

are the same as those initially defined.*/

[(k1[0]

[k}l13

Vehicle[nveh] .Wheel
Vehicle[nveh] .Wheel
Vehicle[nveh] .Wheel

[S—

1l

[7][k].Location.Coord]
[j][k;.Locatlon.CoordL
[§][k] .Location.Coord|

veh[nveh] .wheel{j][k]{3] = NOT USED;

veh[nveh] .wheel[j][k]{4] = NOT_USED;

veh [nveh] wheel[g][k}{S} = NOT_USED;

veh{nveh] .skid[j][k] = NOT_USED;/* —=w==——= skid flag ---———-- */
veh[nveh] . 1Ye‘3][k][0] = NOT_USED;

veh{nvehl] .tireijl[k][1] = NOT_USED;

veh[nveh] .tire[3] [ki[2] = NOT_USED;

}
)i
/*========== Load HVE output tracks and send =z==z=====szss=======z==z==*%/

WriteVehicleOutput(data_.tim{i],nveh,veh[nveh]);

1f (hstop = SendHveOutput (numHumans,numVehicles))

return;

/* End of ComputeData ()

* /

207

istop = hstop;

2

015
1

’

Appendix H
EXAMPLE OF ShutDown ()

/* Function ShutDown () Version 1.0 Source Code Listing

Copyright 1993, Engineering Dynamics Corporation
All Rights Reserved.
*/

INT ShutDown (void)
{
/* Getting ready to leave Main Processing Module. Fill out all the

reports and assign all the variables potentially required for
warning messages.

Called by: HveMain()
Function Calls: HveShutdown ()
*/
/* FILL OUT ALL REPORTS */
/* CALL HveShutdown() SO IT CAN SEND REPORTS*/
HveShutdown (istop) ;

return 0;
} /* End of ShutDown() */

208

	D:\EngDyn\deskew_tif\960889.TIF
	image 1 of 28
	image 2 of 28
	image 3 of 28
	image 4 of 28
	image 5 of 28
	image 6 of 28
	image 7 of 28
	image 8 of 28
	image 9 of 28
	image 10 of 28
	image 11 of 28
	image 12 of 28
	image 13 of 28
	image 14 of 28
	image 15 of 28
	image 16 of 28
	image 17 of 28
	image 18 of 28
	image 19 of 28
	image 20 of 28
	image 21 of 28
	image 22 of 28
	image 23 of 28
	image 24 of 28
	image 25 of 28
	image 26 of 28
	image 27 of 28
	image 28 of 28

