SAE TECHNICAL
PAPER SERIES 940923

An Overview of the HVE Developer’s Toolkit

Terry D. Day
Engineering Dynamics Corp.

Reprinted from: Accident Reconstruction:
Technology and Animation IV

(SP-1030)

QAFE FT[,’f fg’.ﬂ’,’,}’,‘fgg’%ﬁ‘,’,ﬁ,’ﬁ;” International Congress & Exposition
“Land Sea Air and Space,, Detroit, Michigan
INTERNATIONAL February 28-March 3, 1994

400 Commonwealith Drive, Warrendale, PA 15096-0001 U.S.A. Tel: (412)776-4841 Fax:(412)776-5760

The appearance of the ISSN code at the bottom of this page indicates SAE’s consent
that copies of the paper may be made for personal or internal use of specific clients.
This consentis given on the condition, however, that the copier pay a $5.00 per article
copy fee through the Copyright Clearance Center, Inc. Operations Center, 222
Rosewood Drive, Danvers, MA 01923 for copying beyond that permitted by Sections
107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds
of copying such as copying for general distribution, for advertising or promotional
purposes, for creating new collective works, or for resale.

SAE routinely stocks printed papers for a period of three years following date of
publication. Direct your orders to SAE Customer Sales and Satisfaction
Department.

Quantity reprint rates can be obtained from the Customer Sales and Satisfaction
Department.

To request permission to reprint a technical paper or permission to use copyrighted
SAE publications in other works, contact the SAE Publications Group.

GLOBAL MOBILITY DATABASE

All SAE papers, standards, and selected
books are abstracted and indexed in the
Global Mobility Database.

No part of this publication may by reproduced in any form, in an electronic retrieval
system or otherwise, without the prior written permission of the publisher.

ISSN 0148-7191
Copyright 1994 Society of Automotive Engineers, inc.

Positions and opinions advanced in this paper are those of the author(s) and not
necessarily those of SAE. The author is solely responsibie for the content of the
paper. A process is available by which discussions will be printed with the paper if
itis published in SAE transactions. For permission to publish this paper in full or in
part, contact the SAE Publications Group.

Persons wishing to submit papers to be considered for presentation or publication
through SAE should send the manuscript or a 300 word abstract of a proposed
manuscript to: Secretary, Engineering Activity Board, SAE.

Printed in USA 90-1203C/PG

940923

An Overview of the HVE Developer’s Toolkit

ABSTRACT

A substantial programming effort is required to develop a
buman or vehicle dynamics simulator. More than half of this
effort is spent designing and programming the user interface
(the means by which the user supplies program input and
views program output). This paper describes a pre-
programmed, 3-dimensional (3-D), input/output window-
type interface which may be used by developers of human
and vehicle dynamics programs. By using this interface, the
task of input/output programming is reduced by
approximately 50 percent, while simultaneously providing a
more robust interface. This paper provides a conceptual
overview of the interface, as well as specific details for
writing human and vehicle dynamics programs which are
compatible with the interface. Structures are provided for
the human, vehicle and environment models. Structures are
also provided for events, interface variables, and the output
data stream. By using these standardized structures, any
compatible physics model (i.e., human or vehicle dynamics
simulator) may be linked into the window interface to model
and illustrate, using fully-rendered, 3-D scientific visualiza-
tion, the kinematic and kinetic behavior of humans and
vehicles within their environment.

SIMULATION IS USEFUL for studying the response of
humans and vehicles during a crash. In addition, simulation
is useful for studying vehicular response to driver inputs and
environmental factors before and after a crash, as well as in
non-crash environments. For these reasons, safety re-
searchers have devoted significant resources toward the
development of simulation tools, both for human simulation
[1, 2, 3] and vehicle simulation [4 - 13]. Each of these
simulation tools was originally developed under contract
with U.S. government agencies (FHWA, NHTSA) or the
Motor Vehicle Manufacturers Association.

" Numbers in brackets designate references found at the
end of the paper.

427

Terry D. Day

Engineering Dynamics Corp.

Simulation programs consist of several individual
components. These components may be broadly categorized
into two areas: Physics and Interface.

The physics components include a controlling
routine, a numerical integration routine, a force/moment
calculation routine and a derivative calculation routine. See
reference 14 for the design details of a typical simulation
program. The interface components include an input
routine, an output routine and, possibly, a graphics routine.
Printing and plotting routines may also be required, if not
supplied by the computer’s operating system.

Researchers wishing to develop a human or vehicle
dynamics program must necessarily include in their program
all the interface components; this task is not trivial. A review
of several existing simulations (see Table 1) reveals that the
number of lines of interface code typically represents ap-
proximately 51 percent of the total programming for a batch-
oriented program using numeric input/output. For a
menu-driven program with numeric input/output and 2-D
graphics, the percentage of interface code grows to 67
percent (see Table 2). Thus, only one third to one half of the
code produced by the researchers is actually related to the
physics of simulation.

This paper describes a 3-dimensional software inter-
face toolkit for use by developers of human and vehicle
simulation programs. The purpose of this toolkit is to reduce
the development time and effort while significantly improv-
ing the quality and usefulness of the simulation. A review of
simulation programs using this interface (see Table 3)
reveals the amount of input/output code in the simulation is
reduced to 24 percent. This reduction is possible because
the programmer is able to leverage off of several hundreds
of thousands of lines of pre-programmed interface code
developed specifically for use by human and vehicle
dynamics simulation programs.

This paper provides an overview of this interface,
called HVE (Human-Vehicle-Environment), and describes
how to write human and vehicle dynamics programs which
are compatible with the interface.

Table 1. Percentage of Input/Output Code for Several Existing Mainframe Simulation and Reconstruction Programs

Program Type 2/3D Interface | Graphics Percent of Total Program
Method Physics /o
CRASH3 2-vehicle collision reconstruction| 2-D Menu None 44 56
SMAC 2-vehicle collision simulation 2-D Batch Wireframe 49 51
TBST 1-vehicle simulation 2-D Menu None 40 60
TBSTT articulated vehicle simulation 2-D Menu None 40 60
PHASE4 articulated vehicle simulation 3-D Batch None 43 57
HSRI-3D occupant/pedestrian simulation | 3-D Batch None 59 41
HVOSM J 71-vehicle simulation 3-D Batch None 67 33
Average 49 51

Table 2. Percentage of Input/Output Code for Seve‘ral Existing PC Simulation and Reconstruction Programs

Program Type 2/3D Interface | Graphics Percent of Total Program *
Method Physics 110
EDCRASH | 2-vehicle collision reconstruction| 2-D Menu Wireframe 32 68
EDSMAC 2-vehicle collision simulation 2-D Menu Wireframe 46 54
EDSVS 1-vehicle simulation 2-D Menu Wireframe 26 74
EDVTS articulated vehicle simulation 2-D Menu Wireframe 27 73
Average 33 67

*
These percentages do not include 103 kilobytes of I/O code in EDVAP shared libraries

Pre-Crash Crash Post-Crash

I I
HUMAN

ENVIRONMENT
| |

Figure 1 - Nine-cell Matrix For Accident Reconstruction

Overview of HVE

HVE is a computer abstraction of the nine-cell matrix
for accident reconstruction (see figure 1) originally
proposed by the late Dr. William Haddon, first Director of
the National Highway Traffic Safety Administration [15].
The nine-cell matrix describes the possible interactions
between humans, vehicles and their environment during the
pre-crash, crash and post-crash phases of an accident.

HVE is not itself an accident reconstruction program.
Rather, HVE is an interface for running accident
reconstruction and simulation programs, much like
Microsoft Windows™ 1is an interface for running PC
programs.

The HVE interface is an integrated set of editors for
creating 3-D physical and visual models of humans, vehicles
and environments. Once created, the kinematics and
kinetics of these models may be analyzed by any

Table 3. Percentage of Input/Output Code for Programs in Table 1 When Using HVE Toolkit

Program Type 2D/3D Interface Graphics Percent of Total Program)
Method Physics /O
EDCRASH | 2-vehicle collision reconstruction 1 Window b4 82 18
EDSMAC 2-vehicle collision simulation t Window b4 85 15
EDSVS 1-vehicle simulation t Window t 70 30
EDVTS articulated vehicle simulation t Window 3 71 29
EDVDS articulated vehicle simulation 3-D Window t 64 36
EDHIS occupant/pedestrian simulation | 3-D Window b4 76 24
EDVSM 1-vehicle simulation 3-D Window i 83 17
Average 76 24

* Current estimates; programming is not yet complete

t All conventional, 2-D methods use the 3-D HVE physical road surfaces, which may be sloped. Thus, these methods become quasi-3-D.

See references 16 and 17 for additional information.

t Al graphic images are in color (up to 16.7 M colors), rendered (lighted and phong shaded), and may be viewed from any user-specified

position.

HVE-compatible human or vehicle dynamics program. The
program results may be displayed both numerically and
visually by HVE. Sequences of several events produced from
several runs may be edited into a single coherent accident
sequence using the HVE playback editor. The output may
be routed to a display, printer, plotter or VCR. See reference
16 for further details.

The remainder of this document describes the details
of producing HVE-compatible simulation programs.

Hum #1 r—
Human Editor |—|Hum#2 |————
. ————
HUM #N | et

Event

Veh #1 - Editor
Vehicle Editor [—| Ve#2 |——
N Dt ————
Veh #n |———s
Environment Editor |

K] [)
3-D Editor ——{ 3-D Environment

Toolkit Description
A block diagram for a typical HVE-compatible
physics model (human or vehicle dynamics calculation
method) is shown in figure 2. Note that conceptually, the
HVE interface surrounds the physics model.
The HVE Developer’s Toolkit is a library of functions
and data structures that provide the developer of a human

Output Tracks

Evnt Evnt = Evnt
#1 #2 #n

Playback Editor

1

} ! }

Display

Printer Plotter VCR

Figure 2 - Block Diagram for HVE application environment. Note that some of the arrows are bi-directional.

Table 4. HVE Toolkit Library Functions

Function Name Arguments Description Called By Calls
HveMain() (none) main routine HVE Interface InitMessageQueue()
send()
receive()
ReceiveHvelnput()
ParseHvelnput()
CalcMethodInfo()
OutputTrackSetup()
ExecuteCalcMethod()
ShutDown()
ReceiveHvelnput() (none) reads all HVE data HveMain() send()
into data structures receive()
SendHveOutput() number of humans, sends all simulation Physics send()
number of vehicles results for current time- receive()
step back to HVE
GetSurfacelnfo() (XY, 2)tire, based on current physics send()
Whire plane, (X, Vtire, returns Zire, receive()
friction factor, friction and slope from
(i,j,k)tire the HVE 3-D physical
environment to the
physics
InitMessageQueue() | (none) establishes communi- | HveMain() (n/a)
cation between HVE
Interface and physics
send() pointer to data, message to tell HveMain() (nfa)
number of bytes of data | HVE Interface that ReceiveHvelnput()
data is coming SendHveOutput()
GetSurfaceinfo()
receive() pointer to data, transfer data from HveMain() (nfa)
number of bytes of data | physics to HVE ReceiveHvelnput()
Interface SendHveOutput()
GetSurfaceinfo()

or vehicle dynamics program access to the HVE interface.
These functions and data structures are described below.

HVE Functions

The functions included in the HVE Developer’s
Toolkit are shown in Table 4. Using these functions makes
the calculation method HVE-compatible. Such methods
may then use the HVE 3-dimensional human, vehicle and
environment models, as well as the event and playback
editors. All HVE input devices (mouse, scanner) and output
devices (display, printer, plotter, VCR/VTR) are also avail-
able to the method.

All HVE-compatible methods will include one
HveMain function. HveMain is called by the HVE interface

430

when the physics program is selected to ensure the user’s
input data are compatible with the programmer’s physics
program. HveMain is also called when the user executes the
event. HveMain performs the task of assigning all the HVE
human, vehicle and environment data to the physics pro-
gram (using the ReceiveHvelnput function).

The programmer must provide five functions which
are called by HveMain. These are: ParseHvelnput,
OutputTrackSetup, CalcMethodlInfo, ExecuteCalcMethod
and ShutDown. (See Table 5 for a brief description of these
functions.) However, all other tasks performed by HveMain,
such as setting up the message queue and sending data back
and forth between the HVE interface and the physics, are
transparent to the programmer.

Table 5. User-supplied Functions Required by the HVE Toolkit

Function Name Arguments

Description

Called By

Calls

ParseHvelnput() (none)

OutputTrackSetup() | (none)

CalcMethodinfo() (none)

ExecuteCalcMethod() | (none)

ShutDown() (none)

converts HVE interface
data into values used
by physics

selects individual
output variables the
physics will send
back to HVE, and if it
will be user-editable

selects which HVE
event dialogs (posi-
tions,driver tables,

etc.) and output types
trajectory sim., variable
outpu, ehicle data,
etc.) are made avail-
able to the user

initializes and executes
the calculation method

send results summary

and warning messages
to the HVE interface for
output during playback,

HveMain()

HveMain()

HveMain()

HveMain()

HveMain()

(none required)

(none)

(none)

(physics-dependent)

(none)

The HVE Developer’s Toolkit requires the program-
mer to supply the human or vehicle dynamics calculation
method (reconstruction or simulation model). The calcula-
tion method must include the SendHveOutput function in
its output routine. This function sends the physics’ output
data structure back to the HVE interface for playback.

The road surface in the HVE environment is com-
posed of a series of polygons, created graphically during the

Surface
Normal

Friction

e——

e

Each Environment Surface Polygon Has:
- Elevation, Z = f(X,Y)
- Surface Normal Vector
- Friction Factor

Figure 3 - Tire-Environment Interaction Model
431

process of creating the 3-D environment. As shown in figure
3, each of these polygons has slope, elevation and friction
properties.

Although not required, the calculation method may
also include the GetSurfacelnfo function into its physics
model. This function is used to obtain from the 3-D environ-
ment the current elevation, slope and friction information
for the specified earth-fixed X,Y coordinates (see figure 3).
By incorporating the GetSurfacelnfo function, the calcula-
tion method becomes much more robust, because it can use
3-D information to provide elevation, roll and pitch data to
2-D and 3-D methods. It also provides a virtually unlimited
number of terrain boundaries.

For further details, see Procedure For Developing
HVE-Compatible Applications, found later in this paper.

HVE Data Structures

The data structures included in the HVE Developer’s
Toolkit are shown in Table 6. These structures are the means
by which all data are passed between the HVE interface and
the calculation method. They are used to:

e send/receive HVE input data
e send/receive HVE output data
e send/receive road surface data

Table 6. HVE Toolkit Data Structures (see also Appendix A for details of each data structure)

Structure Name Description Used By (function name)

HumanData contains all data describing the HVE ReceiveHvelnput()
human model ParseHvelnput()

VehicleData contains all data describing the HVE ReceiveHvelnput()
vehicle model ParseHvelnput()

EnvironmentData contains all data describing the HVE ReceiveHvelnput()
environment model ParseHvelnput()

EventData contains all data describing the HVE ReceiveHvelnput()
event (calculation options, selected ParseHvelnput()
humans and/or vehicles, restraint CalcMethodinfo()
system options, and output options)

EventHumanData contains all event-related data describing ReceiveHvelnput()
each HVE human in the event ParseHvelnput()

EventVehicleData contains all event-related data describing ReceiveHvelnput()
each HVE vehicle in the event ParseHvelnput()

InterfaceData contains all current simulation options ReceiveHvelnput()
(integration data, output and playback ParseHvelnput()
time intervals)

HumanOutputTrackSetup contains setup information regarding OutputTrackSetup()
each potential human output variable

(number of variables and usage)

VehicleOutputTrackSetup contains setup information regarding OutputTrackSetup()

each potential vehicle output variable
(number of variables and usage)

OutputHumanData contains human output track data for SendHveOutput()
current timestep

OutputVehicleData contains vehicle output track data for SendHveOQutput()
current timestep

SurfacelnfoData contains surface geometrical and frictional GetSurfacelnfo()
data for tire force calculations

OutputHumanData and OutputVehicleData com-
municate between the physics output routine and the HVE
interface at each timestep. SurfaceInfoData communicates
between the physics model and the 3-D environment at each
calculation timestep. The remainder of the data structures
are set up and passed between the HVE interface and the
physics before calculations begin.

What Am |?

In order to be completely general, as part of the set
up process the physics sends HVE several data structures
which tell HVE what services it requires from the interface.

432

For example, a four-wheeled passenger car simulator re-
quires that HVE allow the user to enter braking force at each
wheel. These data must be entered by the user while setting -
up the event, so HVE must display a brake table dialog.
Similarly, position, damage, payload and other dialogs must
be displayed. The EventData structures pass this informa-
tion from the calculation method to the HVE interface to
tell HVE which dialogs to display.

For a detailed explanation of the HVE data struc-
tures, refer to Appendix A. Careful review of these struc-
tures is useful because these structures provide the exact
definition for the HVE models and output variables.

Procedure For Developing

HVE-compatible Simulations
The programmer produces an HVE-compatible
human or vehicle dynamics program using the following
steps:

e write a physics routine which includes control
logic, a numerical integration method, a physical
analysis of the human(s) and/or vehicle(s), deriva-
tive (acceleration) calculations and an output
routine. Name this function ExecuteCalcMethod().

e write an input function which loads and parses the
necessary HVE human, vehicle, environment,
event and interface data. Name this function
ParseHvelnput().

¢ write a function which tells HVE which event
dialogs output types to make available to the user.
Name this function CalcMethodInfo().

e write a function which tells HVE which output
variables the simulation produces, and whether an
output variable may be user-edited. Name this
function OutputTrackSetup().

e insert the SendHveOutput() function into the
simulation’s output routine.

e insert the GetSurfacelnfo() function into the
physics routine where interaction forces between
an object and its environment are calculated (e.g.,
the tire model).

e write a function which contains all the final results
and warning messages. Name this function
ShutDown().

e compile each source file.

e link each source file, including the hve.lib library
in the link step.

e insert the resulting executable in the
HVE /CalcMethods sub-directory.

When HVE is executed, the program name will
appear in the list of available programs during Event Mode.

A complete sample program illustrating the above
procedure is contained in Appendix B.

Discussion

The HVE Developer’s Toolkit may be used by rela-
tively simple, 2-D programs as well as sophisticated, 3-D
programs. Although the HVE models contain literally
hundreds of parameters per human or vehicle, the program-
mer may select as many or as few of these parameters as are
necessary to meet the needs of the programmer’s physics
model.

An existing calculation method may be modified to
become HVE-compatible using the procedure described
above. The process basically involves stripping away the
existing input and output routines, and replacing them with
their HVE counterparts (refer to the procedure, above; also,
refer to Appendix B).

The HVE Developer’s Toolkit is written in C and
assumes the calculation method will be programmed in C or
C* *. FORTRAN programs have not yet been included. It

433

is, however, possible that FORTRAN programs could be
incorporated using C or C* % "wrappers" around the
FORTRAN program. This requires further research.

The HVE interface has been developed for use on
Silicon Graphics (SGI) workstations, and leverages off the
SGI graphics and video libraries. HVE requires a level of
graphics processing power not yet available on personal
computers (see [16] for performance comparisons). In the
future, it is anticipated that HVE may be ported to other
platforms, including Microsoft Windows NT™,

A program, called AUTOSIM™ is available from
The Transportation Research Institute at the University of
Michigan. AUTOSIM is a computer language designed to
automatically generate simulation programs for the study of
mechanical systems, such as vehicles [18]. Safety researchers
with a background in dynamics and an elementary under-
standing of the C programming language may wish to use
AUTOSIM to generate the C code for the simulation, and
link this code into the HVE interface, using the procedures
described in this paper. The combination of AUTOSIM and
the HVE Developer’s Toolkit provides a complete system
for producing 2-D and 3-D vehicle simulations which
include a robust, 3-D scientific visualization/animation user
interface.

Summary

This paper has presented an overview of the HVE
Developer’s Toolkit, a library of functions and data struc-
tures which may be used by programmers to produce
sophisticated, 3-D human and vehicle dynamics programs.

Use of the HVE Developer’s Toolkit reduces the
programmer’s task by approximately 25 to 50 percent, while
producing a significant improvement in program quality and
usefulness.

Because of the visual 3-D output, use of the HVE
interface as a development tool also greatly reduces the
amount of time required to debug human and vehicle
dynamics programs

Trademarks
HVE, EDVAP, EDCRASH, EDSVS, EDVTS, EDSMAC,
EDHIS, EDVDS and EDVSM are trademarks of
Engineering Dynamics Corporation. Windows NT is a
trademark of Microsoft Corp. AUTOSIM is a trademark of
the Regents of the University of Michigan

References

1. Robbins, D.H., Bennett, R.O., Roberts, V.L., "HSRI
Three-Dimensional Crash Victim Simulator: Analysis,
Verification,and User’s Manual, and Pictorial Section’,
Report No. BIO M-70-9, HSRI, University of Michigan,
June, 1971.

2. Bowman, B.M., Bennett, R.O., Robbins, D.H., "MVMA
Two Dimensional Crash Victim Simulation, Version 4, Vol.
1" Report No. UM-HSRI 79-5-1, University of Michigan,
June, 1979.

3. Flect, J.T., Butler, F.E., and Vogel, SD.L., "An Improved
Three Dimensional Computer Simulation of Crash Victims,"
NHTSA Report Nos. DOT-HS-801-507 through 510, April,
1975, Vols. 1-4. '

4.Calspan Corporation, "Highway-Vehicle-Object
Simulation Model", Calspan Report No. FHWA-RD-76-
162, February, 1976.

5. McHenry, R.R,, "Development of a Computer Program
to Aid the Investigation of Highway Accidents," Calspan
Report No. VI-2979-V-1, DOT HS 800 821, December,
1971.

6.MacAdam, C.C., Fancher, P.S., Hu, G.T., Gillespie, T.D.,
"A Computerized Model for Simulating the Braking and
Steering Dynamics of Trucks, Tractor-semi-trailers,
Doubles, and Triples", Report No. UM-HSRI-80-58, HSRI,
University of Michigan, June, 1980.

7. Moncartz, H.T., Bernard, J.E., Fancher, P.S., "A
Simplified, Interactive Simulation for Predicting the Braking
and Steering Response of Commercial Vehicles", Report
No. UM-HSRI-PF-75-8, HSRI, University of Michigan,
August, 1975.

8. Allen, R.W., Szostak, H.T., et al, "Analytical Modeling of
Driver Response in Crash Avoidance Maneuvering: Vol. I -
Technical Background," DOT-HS-807 270 NHTSA,
Washington, DC, 1988,

9. Nalecz, A.G., "Development and Validation of Light
Vehicle Dynamics Simulation (LVDS)," SAE Paper No.
920056, Society of Automotive Engineers, Warrendale, PA,
1992,

10. Vehicle Analysis Package - EDSVS Program Manual,
Version 4, Engineering Dynamics Corporation, Beaverton,
Oregon, 1993.

11. Vehicle Analysis Package - EDVTS Program Manual,
Version 4, Engineering Dynamics Corporation, Beaverton,
Oregon, 1993.

12. Vehicle Analysis Package - EDCRASH Program Manual,
Version 4, Engineering Dynamics Corporation, Beaverton,
Oregon, 1993.

13. Vehicle Analysis Package - EDSMAC Program Manual,
Version 2, Engineering Dynamics Corporation, Beaverton,
Oregon, 1993.

14. EDC Simulations Training Manual, Version 4, Engineer-
ing Dynamics Corporation, Beaverton, Oregon, 1989.
15.Lee, S.N., Fell, J.C., "An Historical Review of the Nation-
al Highway Safety Administration’s Field Accident Inves-
tigation Studies," NHTSA, Washington, DC, 1988.

16. Day, T.D., "A Computer Graphics Interface Specifica-
tion for Studying Humans, Vehicles and Their
Environment," SAE Paper No. 930103, Society of Automo-
tive Engineers, Warrendale, PA, 1993.

17. HVE Developer’s Toolkit, Engineering Dynamics
Corporation, Beaverton, OR 1994 (currently under
development).

18. AUTOSIM Reference Manual, Version 2, Transportation
Research Institute, University of Michigan, Ann Arbor, MI,
1993.

Appendix A - HVE Data Structures
This appendix contains Tables 7 through 18, and documents each of the HVE data structures. Review of these structures reveals
the characteristics of the human, vehicle and environment models, as well as the output variables for each human and vehicle

struct FrontDimension {

Table 7. HumanData Structure. Review of this structure FLOAT Xf,

provides an overview of the HVE human data model. FLOAT Fronioverhang;
} CGtoFront;

/* human.h struct RearDimension {

Human Data Structure (12-1-83)
N
/
struct HumanData {
long Id;
char Name[MAXNAMELENGTH];
SHORT Location;
SHORT Sex;
SHORT Age;
SHORT BodyType;
SHORT Percentile;
SHORT NumSegments;
SHORT NumJoints;

struct HumanToIerance {
FLOAT HI
FLOAT HeadPnch,
FLOAT HeadSideAccel;
FLOAT ChestSt;
FLOAT ChestForce;
FLOAT ChestAccel;

FLOAT LeftLap;

FLOAT LeftTorso;

FLOAT RightLap;

FLOAT RightTorso;
} Tolerance;

struct HumanSegment {
struct Segmentinertia {
FLOAT Mass;
FLOAT lnema[:!]
FLOAT Weight;
FLOAT Total elght
} inertia;

SHORT CurrentEllipsoid;

SHORT NumEllipsoids; /* on this segment */

struct mentEllipsoid {
char llclz?udN]ame[MAXNAMELENGTH],

FLOAT Length[3];
} Ellipsoid[MAXELLIPSOIDS);

} Segment[MAXSEGMENTS);
struct HumandJoint {

struct JointData {
SHORT SegNum;
FLOAT Coord[3]); /* rel to selected seg CG */
} JointLocf2}; /* proximal or distal seg */

struct JointProperties {
SHORT Type;
FLOAT StopAngPlus(3};
FLOAT StopAngMinus| 3],
FLOAT StopElasticityPlus{3]};
FLOAT StopElasticityMinus 3],
FLOAT ElasticConst{3};
FLOAT DampingConst[3];
FLOAT ToleranceAnglePlus(3);
FLOAT ToleranceAngleMi 3],

) Jonnt[M%OINTS],
/* end of human.h */

Table 8. VehicleData Structure. Review of this structure
provides an overview of the HVE vehicle data model.

/* vehicle.h
./Veh icle Data structure (12-1-93)}

struct VehicleData {

long Id;

char Name[MAXNAMELENGTH].
SHORT Type

char Year[MAXNAMELENGTH];
char Make{MAXNAMELENGTH];
char Model[MAXNAMELENGTH];
char Style[MAXNAMELENGTH];
char imageFilename[MAXNAMELENGTH];
SHORT NumAxies;

SHORT DriverSide;

SHORT Enginelocation;

SHORT DriveAxle;

struct VehicleColor {
FLOAT r;
FLOAT g;
FLOAT b;

} Colory

FLOAT ChangeCG[3];

FLOAT Xr;

FLOAT RearOverhang,

FLOAT OveraliLength;
} CGtoRear;

struct R|19htD1menslon {

FLOAT OveraliWidth;
} CGtoRight;

struct Lef!Dtmensxon {
FLOAT
FLOAT Overalandth
} CGtolLetft;

struct VehicleStiffness {
FLOAT Astf;

FLOAT Bstf
FLOAT Ksif!
} Stiffness[MAXSIDES];

struct Vehiclelnertia {
FLOAT TotalWeight;
FLOAT TotalMass;
FLOAT Sprunginertia[3];
} Inertia;

struct VehicleContactSurface {
SHORT NumSurfaces;
SHORT CunrentSurface;

struct Surface
char Name[MAXNAMELENGTH];
SHORT Location; /* interior or exterior */
FLOAT Coord[MAXCORNERS][S].

struct ContactMaterialProperty {
char MaterialName[MAXNAMELENGTH];
FLOAT LinStf;
FLOAT QuadsStf,
FLOAT CubicStf;
FLOAT DampConst;
FLOAT PenetrnMax;
FLOAT ForceMax;
FLOAT EdgeConst;
FLOAT UnlocadStf;

Property;
é‘%urfagz MAXCONT ACTS);
} Contact;

struct VehicleBett {
SHORT CurrentLocation;

struct BetltLocation {
SHORT CurrentSection;

struct BeltSection {
BOOLEAN Devicelnstalled;

struct BeltProperty {

FLOAT Coord{3}); /* veh anchor pts */
FLOAT LinStf;
FLOAT QuadStf;
FLOAT CubicStf;
FLOAT DampConst;
FLOAT ForceMax;
FLOAT UnloadStf;
Property[2); /* rtand lt sides */

l ion{2); /* Torso orLap */

} LehocalionIMAXBELTLOCATIONS]: 1* 9 pos locs */

struct VehicleAirbag {
SHORT Cunmentlocation;

struct Inl\.ig;gPropeﬂles {
BOO Devicelnstalled;
FLOAT Coord{3};
FLOAT Radius;
FLOAT Length;
FLOAT Pressure;
FLOAT Thickness;
FLOAT Volume;
FLOAT VentCoef;
FLOAT VentArea;
FLOAT VentPress;
FLOAT DefiMax;
FLOAT ConvergCriterion;
FLOAT Elastic;
FLOAT ElasticReb;
FLOAT ElasticBotm;
FLOAT GasRho;
FLOAT GasFlowrate;
FLOAT GasCp;
FLOAT CoimDist;
FLOAT ColmLoad;
FLOAT CoimAngle;
char CunentBackplane[MAXNAMELENGTH],
v } Propeny[MAxA RBAGS);
rbag;

Table 8. VehicleData Structure (cont).

struct VehicleConnection {

struct FrontConnectlon {
SHORT Type:
FLOAT Coord[3];

} Fron;

struct RearConnection {
SHORT Type;
FLOAT Coord{3];
FLOAT Radius;
FLOAT Friction;
FLOAT ArticMax;

Rear;
} &onnection;
struct VehicleDrag {
FLOA ;

FLOAT LinearResist;
FLOAT Const;
} Drag;

struct VehicleDrivetrain {
strucl EngineData {
SHORT CurrentType;

struct ThromeStatus {
SHORT TableLen
FLOAT Table[MAXENGINETABLE][S]. /*speed,power,torq*/
Status[2]; /* WOT, Closed */
} Engine;

struet TransmissionData {

SHORT CurrentTransT%pe

FLOAT Ratio{MAXTRANSGEARS][MAXTRANSRATIOS];
} TransData;

struct mﬂerenlaloat?ﬂ{
SHORT CurrentDi gpe
FLOAT Ratio{MAXDIFFGEARS][MAXDIFFRATIOS);
DiffData;

} Drivetrain;

struct VehicleWheel {

struct Wheellocation {
FLOAT Coord[3};
} Location;

struct VehicleSuspension {

SHORT CurrentSuspType; /* ind, w-beam or 4-sprg */
FLOAT InterTandemLoadXfer; /* per tandem axie set */
struct VehicleSpringShock {

FLOAY LinearRate;

FLOAT Rolistf; /* per axle *

FLOAT RoliCtrhit; /* per SOLID axie*/

FLOAY LatSpringSpace; /* per SOLID axie*/

FLOAT DampRate;

FLOAT Friction;

struct VehicleTire {

char Name[MAXNAMELENGTH];
char Type[MAXNAMELENGTH];
char Mfr[MAXNAMELENGTH];
char Model[MAXNAMELENGTH];
char Size[MAXNAMELENGTH];

BOOLEAN isDual;
FLOAT DuaiSpace;

struct PhysicalData &ad
FLOAT UnloadedRadius;
FLOAT InitialRideRate;
FLOAT SecondRideRate;
FLOAT SecondDefl;
FLOAT MaxDeft;
FLOAT PneumaticTrail;
FLOAT AlignTorqCoef;
FLOAT Spininertia;
FLOAT Weight;
FLOAT Mass;

} Physical;

struct FrictionTable {
SHORT NumTableloads;
FLOAT Load{MAXTIRETABLE];
SHORT NumTableSpeeds;
FLOAT Speed[MAXTIRETABLE];
FLOAT InUse;

struct MuData é /* load and speed */
FLOAT MuXPeak;
FLOAT MuYPeak;
FLOAT MusSlide;
FLOAT Peachnt
FLOAT Lon a_r
Mu[MAXTIRETABLE][MAXTIRETABLE];
} Friction;

struct CalfaTable
SHORT NumTableLoads;
FLOAT Load[MAXTIRETABLE};
SHORT NumTableSpeeds;
FLOAT Speed[MAXTIRETABLE];
FLOAT InUse;

/*load speed*/
FLOAT Data[MAXTIRETABLE){MAXTIRETABLE};
} Calfa;

struct CgammaTable {
SHORT NumTabieloads;
FLOAT Load(MAXTIRETABLE];
SHORT NumTableSpeeds;
FLOAT Speed[MAXTIRETABLE];
FLOAT InUse;

/*load speed */
FLOAT Data{MAXTIRETABLE]{MAXTIRETABLE);
} Cgamma;

struct RollOffTable {
SHORT NumTableSlips;
FLOAT Slip[MAXTIRETABLE];
SHORT NumTableAngles;

FLOAT Hysteresis; FLOAT An Ie[MAXTlRETABIE].
} Spring; FLOAT In
struct VehicleSuspensioninertia {
FLOAT SolidAxieWeight; /* per SOLID axie®/ AT e
FLOAT SolidAxleMass; 1* per SOUD axle*/ FLOAT Lat;
FLOAT SolidAxieinertia; /*per SOUD axie*/ angle */
} Inentia; LData[MAXTlHETA%LE][MAXTIRETABLE];
struct VehicleDeflection { } {—Ir:"o""
SHORT CurrentStop; /* Upper or Lower */
struct StopData { struct VehicleWhee!Brake {
FLOAT MaxDeflection; FLORT Haghme:,
FLOAT StoplinearRate; FLOAT PushoutPress:

FLOAT StopCubicRate; bt
FLOAT StopEnergyRatio; FLOAT TorqueRatio;

g)eData[2], /* Jounce, Rebound */ BOOLEAN IsProportion;

FLOAT ProportionPress;

struct VehicleSpindie { FLOAT ProportionRatio;

FLOAT Cas1e|_': BOOLEAN isAntilock;
EIESIA\; gtf'lsg::]n'nck };l;sk:T AntilockEffectiveness;
} ;t%‘lre?oeln; } Wheel(MAXHVEAXLES]{2]; /* right and left sides */
. struct VehicleBrakeSystem {
struct VehicieCamber io;
FLOAT Const; {)x Solid Axie 7 ¥ B | aiRate:
EHOFT gabl[el\heA')\(CAMBERT BLE] H ,
LOAT Data Al {3 struct VehicleSteerSrslem
) ber_l‘ defi, camb, 1/2track SHORT CurrentAxie; {
struct VehicleAntiPitch { /*defl,AntiPitch*/ struct ?gﬁy;t&r;ﬁ):;e(.
SHORT TableLen; FLOAT Ratio; '
FLOAT Da!a[MAXCAMBERT ABLE][2]; FLOAT ColumnStiffness;
} Antd:/ltch . Ro{l. s;nd or solid axle */ FLOAT Unxagesm‘fness'
struct Vehicle eer HVEAXLE '
FLOAT Coef; /i solid axle */ } E::;%AAX S
FLOAT Const; /* ind axle */ ;
FLOAT Linear; !
El[gﬁ; 8:;% /* End of vehicie.h %/
L RollSteer;
} Suspension;

436

Table 9. EnvironmentData Structure. Review of this
structure provides an overview of the HVE environment
data model. |5
{" Eventinfo struct

/* EventSelectinteractions struct
»

struct EventSelectinteractions
BOOLEAN interactions[MAXELLIPSOIDS] [MAXCONTACTS]);

/* enwviron.h
* struct Eventinfo {

char Name[MAXNAMELENGTH],

int NumSeiectedHum

long SeleciedHumanle[MAXHUMANS],
int NumSelectedVehic

l‘/ EnvironmentData struct

struct EnvironmentData {
struct LocationData {

FLOAT Latitude; long SoloctodVehicleIDs[MAXVEHICLESJ,
FLOAT Longntude: int NumSeloctedOb{
Data; long SelectedObject! Ds[MAXOBJECTS); /* MAXHUMANS + MAXVEHICLES */

enum EventCalculationMethods CalcMethod;
char Name[MAXNAMELENGTH];

char Date[MAXNAMELENGTH]; /* Calculation Options
SHORT Time; */
FLOAT AxisAngle; enum EventGeneralAnalysisOptions GaOptions;
FLOAT WindSpeed; enum EventEdcrashOptions EdcrashOptions;
FLOAT WindDirection; struct EventEdsmacOptions EdsmacOptions;
FLOAT AmbientPress; struct EventEdhisOptions EdhisOptions;
FLOAT AmbientTemp; %
FLOAT Overcast;
FLOAT VisibilityDist; * EventData struct
FLOAT Gravity; »
}.; . struct EventData {
End of Environ.h */ BOOLEAN VerifyPosVel;
lon d;
slrugct Eventinfo Info;

struct EventRestraintSystems RestraintSystems;

Table 10. EventData Structure. Review of this structure j, uctEventSelectinteractions Selectinteractions:

provides an overview of the HVE event data model.
/*EventCaicMethodOptions struct

/* event.h

Data Note: HVE needs to verify that the dialog pops up at all by ANDing all the grayed fields.
iy Event structure This applies to the follom:xg dialogs: s
enum EventGeneralAr i O locity, S i onVel Payload, Throttie Table, Brakes Table, Steer Tabie, Restraints

*

struct EventCalcMethodOptions {

/* THESE VARIABLES DEFINE WHICH DIALOGS ARE SELECTABLE IN
THE EDIT MENU, AND IF APPLICABLE, WHICH FIELDS IN

enum EventEdcrashOptions Normal Tra;ecto Sim, SustamedOontact} oy

enum EventPositions {initialBegPerception, Bfaklng Impact,
Separation,PointOnCurve, EndOfRotation, Fm;_PM

enum EventStartMethod {Euler,ModRungaKutta, RungaKuﬂa.MAXSTA

enum EventPredictorC {AdamsMoutton MilneHammin, MAXPREDCORRECT),

enum EventRestraintType {ShouiderBelt,LapBelt, Airbag,MAX_RESTRAINT TYPES}; o DIALOGS ARE GRAY/UNGRAY.

enum EventCalculationMethods .

; BOOLEAN IsReconstruction; /* 1S METHOD RECONSTRUCTION*/
Generalhn: d@ﬁ‘}’?’a"‘-E"s”“‘c'E"s"s'Ed"‘s- BOOLEAN isSimutation; /* 1S METHOD SIMULATION *
»Edvds, ; BOOLEAN ThreeDPosVel; /* IN POSITION/VELOCITY DIALOG

/* EventEdsmacOptions struct " "; ZAOLLSL,EPI'?'EQYASgTUSE
Special options for EDSMAC calculation method R OSTION TODECIDE | y

*

struct EventEdsmacOptions { 1* THESE AFE USED IN MAKING VEHICLES OPAQUE OR TRANSLUCENT

FLOAT Veclorathusimontincrement Y

ector) | mentincrement; N .
FLOAT VectorForceTolerance; ?&ﬁ InniaPIPoslsL!se%.o 1sUsed:
FLOAT intervehicieFriction; BOOLEAN BegB:klcept;g:sl sisUsed;
FLOAT MinVelocityForFriction; SOOLEAN BegBrekingPosisised;
FLOAT RestitutionConstant; BOOLEAN S";P‘ .°s; aUised:
FLOAT RestitutionLinearCoeff; BOOLEAN P P‘g'g" oS SU”“U o
FLOAT RestitutionQuadraticCoetf; BOOLEAN E:g‘o,;{'o‘g'::ls”“'su o
k BOOLEAN FinalPoslsUsed;
s | BOOLEAN HumanisUsed; /* METHOD USES HUMANS */
SHORT ProdictorbamectorMethod: BOOLEAN VehiclelsUsed; /* METHOD USES VEHICLES */
LA Mo BOOLEAN DamageDataDiglsUsed; /* DISPLAY DAMAGE DATA DLG*/
FLOAT VelocityChangeLimit BOOLEAN PayloadXisU: /~ PAYLOAD DLG-XREQD %/
FLOAT AccelChangelimit; BOOLEAN PayloadYlsUsed; /“PAYLOADDLG-Y REQD */
FLOAT VelocityGomvergeGriterion; BOOLEAN PayloadZisUsed; /* PAYLOAD DLG-ZREQD ¥/
FLOAT Prirtfionatroron: g BOOLEAN PayloadRollisUsed; /* PAYLOAD DLG- ROLL REQ'D*/
; BOOLEAN PayloadPnchlsUUsodsed ”» ;:YLOADYLOAD DLG- Prrc»-;ggo'o-//
BOOLEAN PayloadYawis| ” - YAW REQY

struct EventintegrationWeights { BOOLEAN ThiofleWOTlsUsed; /* THROTILE DLG- WOT AVAIL */
FLOAT Toreowd: BOOLEAN ThrottleTractiveEffortisUsed; /* THROTTLE DLG- TRACTIVE */

FLOAT TorsoVert BOOLEAN ThrottleFrictionisUsed; /* THROTTLE OLG- FRICTION _*
AT Tomoert: BOOLEAN BrakesPedalForcelsUsed:; /* BRAKES DLG-PEDAL FORCE */
FLORT 1o pach: BOOLEAN BrakesWheelForcelsUsed; /* BRAKES DLG-WHEEL FORCE*/
AT Torsalah: BOOLEAN BrakesFrictionlsUsed; /* BRAKES DLG- FRICTION %/
FLOAT HoaaFerd: BOOLEAN WheelDataDlgisUsed: /*WHEELDATADLG AVAL %/

FLOAT Hoadi et BOOLEAN GearTableDigisUsed; /* GEARTABLEDLG AVAIL */
ELOAT Hoadhat:, BOOLEAN SteerAtWheelsisUsed: /* STEERDLG - @ STRG *
FLOAT LegRoll; " BOOLEAN SteerAtTireslsUsed; /* STEERDLG - @ TIRES */
FLOAT LogPch: BOOLEAN CollisionPulseDlglsUsed; /* COLUSION PULSEDLG %/
FLOAT Losynar: BOOLEAN ProducesColiisionPulse; /* PRODUCE A COLSN PULSE */
} IntegrationWerghts: BOOLEAN BeltRestraintsisUsed; /* RESTRAINTS OPTIONS *
. 9 g BOOLEAN AirbagRestraintsisUsed; /* RESTRAINTS OPTIONS *
: BOOLEAN ContactsDlglsUsed; /* CONTACTS INEDIT MENU %/

/* EventRestraintSystems struct
*
struct EventRestraintSystems {

enum EventRestraintType RestraintType;

struct EventBeltData {

LEAN InUse;
SHORT SegmentBeltAttachedTo;
FLOAT SegmentBeltCoord(3];
FLOAT bel!SIackLeﬂ
FLOAT beltSlackRi

} BehtData[MAXBEL PES]. /* MAXBELTTYPES = 2*/

struct EventAirbagData {
BOOLEAN inUse;
FLOAT inFillTime;
FLOAT FiliDuration;
) } AirbagData;

437

b
/* EventCalcMethodOutputType struct

Define the possible output types available from a Calc

Method.

/
struct EventCalcMethodOutputType {

/* THESE VARIABLES DEFINE THE TYPES OF OUTPUT AVAILABLE IN
PLAYBACK

*/

BOOLEAN AccidentHistory;
BOOLEAN DamageData;
BOOLEAN DamageProfiles;
BOOLEAN DataGraphing;
BOOLEAN HumanData;
BOOLEAN InjuryData;

Table 10. EventData Structure (cont.).

BOOLEAN Messages;
BOOLEAN MomDiagramDamage;
BOOLEAN MombDiagramScene;
BOOLEAN ProgramData;
BOOLEAN Results;
BOOLEAN SiteDrawing;
BOOLEAN TrajSimulation;
BOOLEAN VariabieOutput;

} BOOLEAN VehicleData;

i

/Q
Name: EventObjectHeader

Purpose: This structure is filled out by the calc
methed using Eventinfo struct. See
documentation in EventFromCalcMethodHeader
for more details.

*

/
struct EventObjectHeader {
long ObjectiD;

/* IDs FOR THE DATA FOLLOWING ALL THE HEADERS
WHEN A -1L IS REACHED, END OF ATTACHMENTS
LJ

/
long WhichIDs{MAXATTACHEDOBJECTS];

/* -1L=ENVIRONMENT, ELSE, ID OF THE OBJECT'S COORD
./SYSTEM THIS OBJECT IS RELATIVE TO

long RetativeCoordSystemiD;

/.
Name: EventFromCaicMethodHeader

Purpose: Return header from the calculation method.
The calcutation method must fill out the
EventCalcMethodOptions structure so we know which fields to
gray/ungray. It also must decipher from Eventinfo which objects
are allowed and if their connections are valid. In doing this,
it filis out the NumObjects field and object array.

NumObjects = the number of objects, NOT
including their attachments, for example,
if we have 2 semi-trailers, NumObjects = 2 and
object[0].objectiD = truck 11D
object[0).whichiDs 0] = truck 1's trailer 1
bject{0).whichIDs[1] = truck 1's dolly for trailer 2
object{0].whichIDs[2] = truck 1's trailer 2
object{OL.whichiDs[3] = truck 1's dolly for trailer 3
object[0].whichlDs[4] = truck 1's trailer 3

bject[1].objectlD = truck 21D

bject[1].whichiDs[0] = truck 2's trailer 1
object[1].whichIDs[1] = truck 2's doily for trailer 2
object[1].whichiDs{2] = truck 2's trailer 2
object[1].whichiDs 3] = truck 2's dolly for trailer 3
object{1].whichiDs[4] = truck 2's trailer 3

Then, the Calc Control Panel can fill out the selected listbox app

N
/
struct EventFromCaicMethodHeader {
struct EventCalcMethodOptions Options;
SHORT

NumObjects;
struct Evento:l‘ectﬁeader QObject{MAXOBJECTS);
struct Event MethodOutputType OutputType;

Table 11. EventHumanData Structure. Review of this
structure provides an overview of the HVE event-related

parameters pertaining to humans.

/* evnthum.h

*/

/* EventHumanPosVel struct
*

struct EventHumanPosVel {
struct EventHuPosVelData {
/* Position
*

BOOLEAN PosnisUsed;
FLOAT xPos;

FLOAT yPos;

FLOAT 2Pos;

FLOAT rollOrient;
FLOAT pitchOrient;
FLOAT yawOrient;

" .
/. y Velocity

BOOLEAN VelocitylsUsed;
FLOAT fwdVel;

FLOAT latVel;

FLOAT vertVel;

FLOAT rollVel;

FLOAT pitchVetl;
FLOAT yawVel;

} Data[MAXSEGMENTS]{MAXPOSITIONS]; /* MAXSEGMENTS = 3, MAXPOSITIONS = 8%/

P

438

/* EventHumanData struct

This struct holds data specific to each human in each
event.
*/
struct EventHumanData {
long Id; /* WHICH HUMAN'S EVENT DATA? */
struct EventHumanPosVel PosVel;

Table 12. EventVehicleData Structure. Review of this
structure provides an overview of the HVE event-related
parameters pertaining to humans.

{‘; evntveh.h
enum DamageBasis {EBS,DamageProfile, MAX_BASE_TYPES =2};
/* EventVehiclePosVel struct
L]
struct EventVehiclePosVel {
struct EventVePosVelData {
/* Position
*
BOOLEAN PosnlisUsed;
FLOAT XPos;
FLOAT YPos;
FLOAT ZPos;
FLOAT RoliOrient;

FLOAT PitchOrient;
FLOAT YawOrient;

/* Velociy
*/

BOOLEAN VelocitylsUsed;
FLOAT uVel;

FLOAT wVel;

FLOAT wVel;

FLOAT SlipAngle;
FLOAT TotalVel;

FLOAT RoliVel;

FLOAT PitchVel,

FLOAT YawVel;

} Data[MAXPOSITIONS]; /* MAXPOSITIONS =8 */
h
/* EventVehicleDamageData struct - used by reconstruction calculation methods only
*

struct EventVehicleDamageData {

BOOLEAN ValidCDC; /* NEED BOOLEAN, SINCE TESTING FOR

‘None' IS NOT LANGUAGE INDEPENDENT */
char Cdc[MAXCDCLENGTH]J; /* INITIALLY, "None' */
FLOAT Pdof;

FLOAT ImpuiseCenterX;
FLOAT ImpuiseCenterY;

/* THE BASIS DETERMINES WHETHER TO USE ebs OR THE Damage
. Profile DATA
/

enum DamageBasis Basis;
/* FOR EBS - SAME AS DeltaVtot
*/
FLOAT DeltaViot;
FLOAT DeltaVFwd;
FLOAT DeltaVLat;
FLOAT DeltaVAng; /* FOR DAMAGE PROFILE*/
int NumZones;
FLOAT Width;
FLOAT Offset;
FLOAT CrushDepths[MAXCRUSHENTRIES); /* MAXCRUSHENTRIES = 10 %/
struct EventAStiffnessCoeffs {

FLOAT Coef{MAXCRUSHZONES);
} Astiffness;
struct EventBStiffnessCoeffs

FLOAT Coef[MAXCRUSHZONESY);

BStiffness;

{; ADDITIONAL OUTPUTS
FLOAT Energy;
FLOAT Foroeg;y

h

I:; EventPayloadData struct

struct EventPayloadData {
BOO! ists;
FLOAT Coord([3};
FLOAT Weight;
FLOAT Mass;

) FLOAT Inertia[3};

/* Eventlights struct
Wi

struct Eventlights {
BOOLEAN IsOn[MAXUGHTS];

Table 10. EventVehicleData Structure (cont.).

4‘ EventThrottleTabie struct

/

struct EventThrottieTable {
SHORT ThrottieOption;

struct ThrottieTableData {
SHORT TableLength;

struct
FLOAT Time;
FLOAT Table[MAXHVEAXLES][2);
FLOAT Value,
} Data{MAXDRIVERTABLE];
} ThrottieData[MAXDRIVERTABLETYPES];
h
(" EventBrakeTable struct
struct EventBrakeTable {
SHORT BrakeOption;

struct BrakeTableData {
SHORT TableLength;

struct
FLOAT Time;
FLOAT Table[MAXHVEAXI.ES] 2);
FLOAT Value;

} Data[MAXDRIVERTABLE];

} BrakeData[MAXDRIVERTABLETYPES);
|5
/* EventGearTable struct
*/
struct EventGearTable {
SHORT GearBoxOption;
/* THIS IS FOR Transmission OPTION
*/
SHORT NumTransShifts;
struct TransShiftData {
FLOAT Time;
SHORT WhichGear; /* see VeTransmissionData */
} TransData[MAXGEARTABLE]; /* MAXGEARTABLE = 10 */
{‘;THIS IS FOR Differential OPTION
SHORT NumDiffShifts;
struct DiffShiftData {
FLOAT Time;

SHORT WhichGear; /* see VeDifferentialData */
} DiffData]MAXGEARTABLE]; /* MAXGEARTABLE = 10 *

h

/'/ EventSteeiTable struct

struct EventSteerTable {
SHORT SteerOption;

struct SteerTableData {
SHORT TableLength;

struct {
FLOAT Time;
FLOAT Tablc[MAXHVEAXLES] 25

} SteerData[MAXDRIVERTABLETYPES];
|4
4" EventWheeiData struct
struct EventWheelData {

FLOAT DragFactor;
BOOLEANra%iotmsndding;

struct EventWheelLockupSteerData {
FLOAT WheeilLockup;
FLOAT WheelSteer;

} Data[MAXHVEAXLES](2];

b

I’I EventDriverControls struct

struct EventDriverControls {
struct EventThrottieTable ThrottleTable;
struct EventBrakeTable BrakeTable;
struct EventGeasTable GearTable;
struct EventSteerTable SteerTable;
struct EventWheelData WheelData;

439

/* EventCollisionPulse struct
.
struct EventCollisionPuise {

long calciD; /* which calc the data was gotten from
vehicle must be in this calc method
1o select this.
-1l. = USER-ENTERED *
char filename{MAXFILENAMELENGTH]; /* filename the data was
gotten from or saved to.
** - MEANS NOT SAVED
OR GOTTEN FROM A FILE*/
SHORT Tablelength;
struct EventPuiseAccelData {
FLOAT time;
FLOAT forward;
FLOAT lateral;
FLOAT vertical;
FLOAT roll;
FLOAT pitch;
FLOAT

} PulseAzac:'I;[MAXPULST ABLELEN]; /* MAXPULSTABLELEN = 100*/

struct EventinUsePulseFactors {
FLOAT fwd;
FLOAT lateral;
FLOAT vertical;
FLOAT roll;
FLOAT puch
FLOAT yaw;
} PuiseFactors;

h
/* EventVehicleData struct

This struct holds data specific to each vehicle in each event.
*

struct EventVehicleData {
long Id; /* WHICH VEHICLE'S EVENT DATA? */
struct EventVehiclePosVel PosVel;
struct EventVehicleDamageData VehicleDamage;
struct EventPayloadData Payload;
struct EventLights Lights;
struct EventDriverControls DriverControls;
) struct EventCollisionPuise CollisionPulse;

Table 13. InterfaceData Structure. Review of this structure
provides an overview of the HVE interface variables, used
mostly by simulations.

/* intface.h
*f
enum PlaybackType {Storage,Animation};

/* interfaceData struct

*/

struct InterfaceData {
/* Integration Timesteps
*/

FLOAT dtHumanCol;
FLOAT diVehicleCol;
FLOAT dtCurbCol;
FLOAT diVehSep;
FLOAT dtVehTraj;
FLOAT ditOutput;

l.‘ Termination Conditions

FLOAT Tmax;

FLOAT TermLinearVel;

FLOAT TermAngularVel

Fl 01:‘1'T M”MM'

L Veloci

FLOAT VelocityChang %mn
FLOAT AccelerationChangelimit;

{; Playback

enum Play
) FLOAT d!Playbuck;

KT e)

Table 14. The following portion of output.h shows each
of the output variables monitored by HVE.

/* output.h
Output data structures and variable definitions.

/* VEHICLE OUTPUT DATA GROUPS (for reference only)
SMKinematics (sprung mass kinematics)
SMKinetics (sprung mass kinetics)
TireData (locn, forces/moments, driver inputs, skid/scuff)
WheelData (kinematics, forces, driver inputs)
Connection (relative angles, forces and moments)
Dri in (engine, trar ion, differential

Driver (throttie, brake, gear, steering)

Table 14. HVE Qutputs (cont.) forces

WheelData{MAXAXLES [2 10] = Ion'%fofcoatctr {Fx)
WheelData]MAXAXLES]{2][11] = lat force at ctr (Fy)
WheelData[MAXAXLES]{2][12] = norm force at ctr (Fz)
suspension deflection and forces N
Below are the definitions for each data group (for reference only) am:g::: MAXAX!.Eﬂ g :3] - 3::: g:g 1;::\ equil
Sprung Mass Kinemaiics Group (pas, v, cce Mool WAL ESI I IS = £ ot wheel hom same
position WheeiData{MAXAXLES]{2]{17] = Fz at wheel from anti-pitch
SMKir ics[0] = G X coord
icsf1] = Results of driver controis (attempted throttle and
SMKi,nemat!cs‘ ! = ch ; 232{3 brake torque at wheel, steer angle at wheel)
SMKir ics[3] = roll about x axis WheelData[MAXAXLES]{2][18] = drive torque, spin axis
SMKir icsl4] = pitch about y axis WheelData[MAXAXLES](2][19] = brake torque, spin axis
SMKinematics[S] = yaw about z axis WheelData[MAXAXLES][2]{20] = brake pressure at wheel
SMKinematics{s] = path radius WheelData{MAXAXLES][2][21] = steer angle (delta)
SMiinematics{7] = course angle Sprung Mass Connections Group (position, orientation,
velocity forcesh& mon'\henti1 folr an arlt;zul;:::’ c;’b]ect)l
- Note that each vehicle can be t y only one
3322:%:2}3} ts?‘t‘aels\{‘elocny vehicle; thus, only one set of data is required
v p angle towed vehiclet
SMKinematics[10] = longitudinal vel (u) x:’ h l;ﬂve 1ot hicle
SMKinematics[11] = side velocity (v} gles are re 0 tow vehic
SMKinematics[12] = normal velocity (w or vertical) orientation
SMinematics{13] = forward vel Connection(0] = roll articulation
o i ty Connection[1 pitch articulation
SMiinematics(15] = roll velocity (p) Connoctlon-zl - articulation
SMKinematics[16] = pitch velocny Q yaw
SMKinematics[17] = yaw velocity (1)
acceleration Connecﬂon[a] = ang veloc about rol! axis
SMKinematics[18] = total acceleration Connection[4] = ang veloc about pitch axis
SMKinematics[19] = long acceleration (udot) Connection(5] = ang veloc about yaw axis
SMKinematic[31] = norma aceetoration ol acceleration
1] = normal lerati ot
smgnamaﬁcs: 22) = :otrwrilrd acoolerauon g:::g:g:fsl = :g zg:: ms{ g‘:’c:";i.s
er 3] = late ! =
SMKi’n:maigcsw 24] = tangential accel Connactnon[i = ang accel about yaw axis
SME:' mati §§ - f:,'l) a‘(_:ce|l {pdo) connection forces and moments
SMKinematics[27] = pitch leration (qdot) Connection[9) = Fx from connection
SMKi tics(28 lerati dot Connection 10] = Fy from connection
net =yaw (rdot) gnneclion = Fz from connection
Sprung Mas Kinetics Group (forces & moments) nnection[12] = Mx from connection
SMKir = sum Fx from fires (suspension) g“"“'!"“ }2 = uy :’°’“ °°""°3.‘°“
SMKinetics| 1 - sum :y from tires (suspension) nnection| = Mz from connection
neti - sum Fz from tires (suspension) . . . L " .
mgn,ﬁ”m - sum Mx from ;,,,s ?:u;:ens',on) E:;ﬁr:m Group (engine, transmission, differential)
netics{4] = sum My from tires (suspension) : .
SMKinetics[S! = sum Mz from tires {suspenslong g'."’""!“[o] = engine speed
SMKJneﬁcsb} sum Fx from collision D""“m"}"] = engine tP°W°"
SMgneﬁm sum Fy from collision rivetrain{2] = engine torque
SMKinetics[8} = sum Fz from collision
SMKinetics[Qi sum Mx from collision transmission and differential gear ratios
SMKinetics[10] = sum My from collision gnveirmnﬂ = g‘“"s’"'sz'?" gear ratio
SMKinetics[11] = sum Mz from collision rivetrain[4 ifferential gear ratio
SMKinetics[12] = sum Fx from aerodynamics
SMKinetics{13] = sum Fy from aerod;':amucs Driver Controls Group (throttle, brake, gear,
SMKinetics[14] = sum Fz from aerodynamics g”""g throti "
SMKinetics[15] = sum Mx from aerodynamics fiver = throttle posl ;g:‘
SMKinetics[16] = sum My from aerodynamics g""”[} - grake pedal force
SMKinetics{17] = sum Mz from aerodynamics river[2] = brake system pressure
SMKinetics{18] = sum Fx from connection Dnver[:i] = tr:fnsmns:lon gear "ut""ebe'
SMKinetics(19] = sum Fy from connection = differential gear number
SMKinetics{20] = sum Fz from connection Oriver[S] = steer angle at wheel
SMKinetics{21] = sum Mx from connection .
SMKinetics[22] = sum My from connection /
SMKinetics[23] = sum Mz from connection

I* Output track info structure for each vatiable
Tire Group {tire location, forces and moments) *

NOTE: ’ indicates tire reference frame which has its struct OutputTrackVariable {
. " o char ResName[MAXNAMELENGTH!
;"§";,?;m‘d?,£"°;f§,ﬁ‘,°,2'° contact pateh. X' axis SHORT “Statums 1~ EDITABLE, NOT_EDITABLE, NOT_USED ¥
the vehicie x axis. 2’ is normal to the road h
piane and y' is orthogonal tox' and z'.
s T T
Irepata conf Cl r .
TireDatal MAXAXLESf2](2 iz:comt:g 5”:’.: ar Table 15. HumanOutputTrackSetup Structure. Review
irel a| n atc r . . .
TreDatalAXALES o)l \Zlccgnlact ‘Sm: ar of this structure provides an overview of the HVE human
i t: AXAXLE:! S5 tact ¢t
TireData|MAXAXLES| [2](6 ong tife 1 fopracg;(Fx'; _ output data model.

TireData[MAXAXLES
TireData{MAXAXLES'
TireData[MAXAXLES]
TireData]MAXAXLES
TireData[MAXAXLES
TireData]MAXAXLES
TireData[MAXAXLES
TireData[MAXAXLES
TireData[MAXAXLES'

lat tire force (Fy’)
normal tire force (F2')
overtuming mom (Mx'}
roll res moment (My’)
aligning torque (M2}
net wheel torque
loaded tire radius

14} = camber angle of wheel ct Huma I TrackSety,
15] = slip angle (aipha) st ont; Mr"lOutpui e P

-~
TR RN R AR

1* Setup structure for each human output track variable
L]

N AN AN AN N A A N N ARY N A N N
o

TireData[MAXAXLES][2][16] = skid fiag struct OutputTrackVariable SMKinematics[MAX_MASS KINEMATIC VARS

TireData[MAXAXLES][2][17} = scuffflag struct oﬁngzngﬂabs: smmzzm[ﬁ{x MASS_KINETIC_VARSY; %

Whe'el Group (defiection, forces) K

position

WheelData[MAXAXLES](2]{0] = x coord of wheel ctr

WheelData[MAXAXLES][2]{1] = d of wheel ctr ' H

WheelData WLEJL;L’ = Jcoord of wheel ct Table 16. OutputHumanData Structure. Review of this

WheelData[MAXAXLES](Z][3] = spin angle of wheel structure provides an overview of the HVE human output
Joc

wh?e%ata[MAXAXLES 2)(4] = norm vel of wheel ctr data model.

WheelData{MAXAXLES][Z}[S} = gamma-dot

WheelData[MAXAXLES][2][6] = spin velocity of whee! /.'/ Output structure for human at each timestep

W::LOI‘D‘;EI‘MAXAXLES][Z] {7] = norm-accel of wheel ctr struct OutputHumanData {

WheelData[MAXAXLES][2](8] = gamma-ddot Iorg

WheelData{MAXAXLES][Z][S] spin acceleration of wheel AT SMKinematnes[MAX MASS_KINEMATIC VARS];

FLOAT SMKinetics{MAX_MASS_KINETIC_VARS];

440

Table 17. VehicleOutputTrackSetup Structure. Review of
this structure provides an overview of the HVE vehicle
output data model.

/* Setup structure for each vehicle output track variable
*/

:structl VehicleOutputTrackSetup {

ong Id;

strugct OutputTrackVariable Kinematics{MAX_MASS_KINEMATIC VARS];
struct OutputTrackVariable SMKinetics[MAX_MASS_KINETIC_VARS];
struct OutputTrackVariable TireData[MAX_TIRE VARS]);
struct OutputTrackVariable WheeiData[MAX WHEEL VARS);
struct OutputTrackVariable Connection[MAX CONNECTION VARS]
struct OutputTrackVariable Drivetrain[MAX DRIVETRAIN_VARS;
struct OutputTrackVariable Driver[MAX_DRIVER_VARS]);

b
Table 18. OutputVehicleData Structure. Review of this

structure provides an overview of the HVE vehicle output
data model.

/* Output track data structure (for each output time increment),
*
slruct OutputVehucleDala {

gAT SMKinematics[MAX_MASS_KINEMATIC VARS);
FLOAT SMKinetics[MAX MASS KINETIC_VARST;
FLOAT TYireDatal TIRE_VARS);
FLOAT WheelData[MAX WHEEL VARS];
FLOAT Connection{MAX_ CONNECTION VARS);
FLOAT Drivetrain[MAX_DRIVETRAIN_VARS);
FLOAT Driver[MAX_DRIVER_VARS); ™

/* end of output.h */

441

Appendix B - Sample HVE-Compatible Program
The following illustrates an example of an HVE-compatible program, written in C. This simple 2-D program accelerates
a vehicle from its initial position and velocity until the user-specified maximum simulation time is reached. A brief

explanation for each function is provided.

All functions for this program are contained in a
single file, named sample.c. The file begins by
naming all the functions and a list of header files to
be included (with the exception of math.h, these
files are suppliedby the HVE Developer's Toolkit).

Also, global HVE data structures are declared.
/* FILE: sample.c

Sample program which illustrates use of HVE interface.

Functions included:
ExecuteCalcMethod ()
ParseHvelnput()
Cache!hodlnfoo
SelectOutputTrackVars()
ShutDown()

*/

#include <math.h>
/* HVE definitions and headers
*

#include °..\lib\hvedef.h"
#include "..\lib\angles.h"
#define RIGHT

#define LEFT 1

/* HVE data structure headers
*/

#include °..\lib\vehicle.h*
#include °..\lib\evntveh.h"
#include °..\lib\environ.h"
#include "..\lib\event.h"
#include "..\lib\intrface.h”
#include *..\lib\output.h"
4‘/ HVE data structures
struct VehicleData *Vehicle;
struct EventVehicleData *EventVehicle;
struct EnvironmentData Environment;
struct InterfaceData Interface;
struct EventFromCalcMethodHeader CalcMethodHeader;

struct VehicleOutputTrackSetup *VehicleOutpulTrack;
struct OutputVehicleData OutputVehicle;

Next, the user-defined functions and variables used

by sample.c are declared {this simple program
declares most of its variables as global).

/* Prototypes for user-defined functions
*

SHORT WriteOutput{void);

[#ermermneseseeees GLOBAL VARIABLES */
FLOAT a; /* vehicle forward acceleration (in/sec ~2) */
FLOAT g; /* acceleration of gravity (in/sec~2) %/
FLOAT t; /* time (sec) .
FLOAT tmax; /* maximum simulation time (sec} */
FLOAT dtprint; /* print time interval (sec) */
FLOAT V; /* cutrent velocity (in/sec) *
FLOAT Vvo; /* initial velocity {in/sec */
FLOAT vmin; /* termination velocity (in/sec) */
FLOAT CG X /* X coordinate of CG at each time step (in)'/
FLOAT CG-X0; /* initial X coordinate of CG (in)

FLOAT CGTY; /* Y coordinate of CG at each time step ;'I
FLOAT CG™Z /* Z coordinate of CG at each time step (in)*/
FLOAT Roll; /* roll angle of veh at each timestep (rad) */
FLOAT Pitch; /" pitch angle of veh at each timestep (rad)*/
FLOAT Yaw, &Ih angle of veh at each timestep (rad) *
FLOAT x[4); eel x-coord {in)

FLOAT y[H l‘ Wheel y-coord (in ‘I
FLOAT z[4]; /* Wheel 2-coord (in| */
FLOAT ThrottieMethod; /* Type of HVE throttle table */
FLOAT ThrottleTableLen; /* Length of HVE throttle table */
FLOAT BrakeMethod; /* Type of HVE brake table */
FLOAT BrakeTabieLen; /* Length of HVE brake table *f
FLOAT SteerMethod; " Type of HVE steer table *
FLOAT SteerTablelen; /* Length of HVE steer table *

The following function is called by HVE to execute the
simulation. This is the main physics program written
by the user (it must be named ExecuteCalcMethod).

?HORI’ ExecuteCalcMethod()
/* Function that executes the sample physics program.
Calied by: HveMain

./Function Calls: WriteOutput(

/* This code controls the execution of the calculation method.

*

do

{ a = . 2%g; /* constant! */
v = VO + a*t;
CG X = OGXO+VO'!+05‘a't't

WriteOutput(f;
} while {t < tmax +dtprint && V > vmin);

return 0;
} /* End of ExecuteCalcMethod() */

The following function is called by HVE to assign all
variables required by sample.c. Itis supplied by the
user, and must always be named ParseHvelnput.)

/* Function: ParseHvelnput) Version 1.0 Source Code Listing
Copyright 1893, Engineering Dynamics Corporation
All Rights Reserved ng

*/

SHORT ParseHvelnput(void)
/* Assigns input data used by the sample program.

Called by: HveMain()
Function Calis: (none)

e LOCAL VARIABLES ——— e et/
SHORT WheelNum; /* Local index */
SHORT MaxWheels; /* Number of wheels on vehicle *
SHORT AxieNum; /* Local index */
SHORT MaxAxies; /* Number of axles on vehicle */
SHORT Side; /* Local index */
" */

/* First, parse the environment data.
*f

g = Environment.Gravity;

/* Parse the general vehicle ch ics. Our pl
program only needs wheel posmons
Wi

MaxAxies = Vehicie[0]. NumAxles,
MaxWheels = 2*MaxAxles
for (WheelNum =0; WheelNumaxWheels, WheelNum + +)

¢ AxisNum = WheelNum/2;
Side = eeiNum % 2 = = 0) ? RIGHT : LEFT;
x{WheeiNum)] = Vehicle(0].Wheel| AxleNum][Sude .Location.Coord[0];
y[WheelNum -VehlcleE]-Wheel| AxleNum] Side]. Location.coordr];
INum] =Vehicie[0].Wheei[AxleNum][Side].Location.Coord{2];

/* Parse event-related vehicle data. Start with positions (the
sample program has onty one degree of freedom - X direction)

*f

CGX = ce X0 = EventVehicle{0).PasVel.Data[0].XPos;

CGY =

CG Z fabs(Even(Vehmle[o] PosVel.Data[0].ZPos};

Roll = 0.0

Pitch = 0. O

Yaw = 0.0:

{‘; velocities

V = VO = EventVehicle[0).PosVel.Data[0].uVel;
{' Assign interface variables.

/

tmax = Interface.Tmax;
diprint = Interface.dtOutput;
vmin = Interface.TermLinearVel;

Appendix B (cont.)

/* Tum off driver controls {throttle, braking and steering

/tables).

-

ThrottleMethod = EventVehicle[0].DriverControis.ThrottieTable.ThrottleOption;
ThrottleTableLen = 0;

BrakeMethod = EventVehicle[0].DriverControls.BrakeTable.BrakeOption;
BrakeTableLen =0;

SteerMethod = EventVehicle[0].DriverControls.SteerTable.SteerOption;
SteerTablelLen =0;

return O;

} /* End of ParseHvelnput() */

The following function is called by HVE, and tells HVE
what kind of program it is, and what kinds of output
it will produce. This function is user-supplied, and
must be named CalcMethodInfo.
R g e S e 79
o All Fights Reserved.
SHORT CalcMethodinfo{void)
{" Sets up the truth table for HVE edit options.
I"-——-,——-——-—— LOCAL VARIABLES */
SEORT i /* Local index »/

/

CalcMethodHeader.NumObjects = 1;

CalcMethodHeader.Options.IsReconstruction = FALSE;
CaicMethodHeader.Options.IsSimulation = TRUE;

/* if the following is FALSE, do not allow user to enter
positions for Z, roll and pitch. Instead, use Autoposition
to compute the values.

»

/

CaicMethodHeader.Options.ThreeDPosVel = FALSE;

/* The following are used by HVE to decide whether vehicles are
shown as translucent ets* (not used in calculations) or
as normally rendered vehicles (used in calculations).

»

CaicMethodHeader.Options.InitialPosisUsed = TRUE;

/* The foliowing tell HVE to make the following output dialogs
./available in Playback mode.

CalcMethodHeader.OutputType.AccidentHistory = TRUE;
CalcMethodHeader.OutputType.DataGraphing * = TRUE;
CalcMethodHeader.OutputType.Messages = TRUE;
CalcMethodHeader.OutputType.ProgramData = TRUE;
CalcMethodHeader.OutputType.TrajSimulation = TRUE;
CalcMethodHeader.OutputType.VanableOutput = TRUE;
CalcMethodHeader.OutputType.VehicleData = TRUE;
CalcMethodHeader.Object[0].ObjectiD =1;
for (= 0; jalcMethodHeader.NumObjects-1; j+ +)
CalcMethodHeader.Object[0].WhichIDs(j} = 1;
CalcMethodHeader.Object([0]. RelativeCoordSystemiD = 1L
return O;

} /* End of CalcMethodinfo() */

The following function is called by HVE, and tells HVE
what time-dependent output variables to produce.
This function is user-supplied, and must be named
SelectOutputTrackVars.
" Fuvg)ion:. S;!e';t.?sutgut'fmck\/uso Version 0160 Source Code Listing
.)0 %;rg‘ts A (,Wg‘gmeenng Dynamics Corporation

SHORT SelectVehicieOutputTrackVars(SHORT NumVehicles)

{'/ Sets up the HVE vehicle output tracks.
[Aereeerer—ee——o- GLOBAL VARIABLES
VehicleOutputTrackSetup VehicleOutput Track[MAXVEHICLES);
Output track data setup structure
LOCAL VARIABLES

SHORT NumVehicles; Number of vehicles
wmemmnmemneeeneeeee LOCAL VARIABLES

(none)
/. ./

/* Define output variables. The sample program outputs only
. kinematic data (position, velocity and acceleration).

/* Position */

VehicleOutputTrack[0].SMKir tics[0].Status = NOT EDITABLE;
VehicleOutputTrack(0].SMKir ics[1].Status = EDITABLE;
VehicleOutputTrack{0]. SMKir i Status = EDITABLE;
VehicleOutputTrack{0]. SMKir ics{3].Status = EDITABLE;
VehicieOutputTrack{0].SMKir ics{4].Status = EDITABLE;
VehicleOutputTrack[0].SMKinematics{5].Status = NOT_EDITABLE;
/* velocity */

VehicleOutputTrack[0].SMKinematics[13].Status = NOT_EDITABLE;

/* acceleration */
VehicleOutputTrack[0).SMKinematics[22].Status = NOT_EDITABLE;

retum O;
} /* End of SelectVehicleOutputTrackVars() */

The following user-supplied function is called by
sample.c, and sends the output data from the
user’s simulation to HVE. Its name is unimportant,
but it must contain the function
SendHveOutputectOutputTrackVars.

?HORT WriteOutput{void)

/* Function WriteOutput() is called by any simulation to assign
the curmrent time-dependent simulation data to an HVE output
track. WriteOuput returns a code from the HVE interface to
the calling fuction in the event of user interaction or an
efror.

Called by: {Any simulation)

./Function Calls: send()

S emermmeeeereeeceeeee LOCAL VARIABLES ~emeeeeeree et/
SHORT DataError = 0; /* Data error flag *
/* Sprung Mass Kinematics Group {position velocity and accel)
position */

OutputVehicle. SMKir ics{0] = CG_X;
OutputVehicle.SMKinematics{1 = CG_Y;

OutputVehicle. SMKir i = CG~Z;

OutputVehicle. SMKir ics{3] = Roll;
OutputVehicie.SMKir ics(4 = Pitch;
OutputVehicle.SMKinematics{5] = Yaw;

/* velocity */
OutputVehicle.SMKinematics{13] =V, /* forward vel*/

/* acceleration */
OutputVehicle.SMKinematics{22) = a; /* forward accel*/

t + = dtprint;

/* Send the output track to HVE. Return a message if something
goes wrong.
-

/
if (!send((char *)&OutputVehicle,
{long)sizeof(struct QutputVehicleData)))

DataError = BAD_VEH_OUTPUT_TRACK_MESSAGE;
return DataError;
} #* End of WriteOutput() */
The following (and final) function is called by HVE,

and tells HVE what messages to display by HVE
during Playback (sample.c produces no messages).

” Funccgon S?’utDovm Version 1.0 Source Code Listing
ight 1993, Engineering Dynamics Corporation
All %gﬁm Resemdg 9

*/

?HORT ShutDown (void)
return O;

} /* End of ShutDown() */

/* end of sample.c */

	D:\EngDyn\deskew_tif\940923.TIF
	image 1 of 19
	image 2 of 19
	image 3 of 19
	image 4 of 19
	image 5 of 19
	image 6 of 19
	image 7 of 19
	image 8 of 19
	image 9 of 19
	image 10 of 19
	image 11 of 19
	image 12 of 19
	image 13 of 19
	image 14 of 19
	image 15 of 19
	image 16 of 19
	image 17 of 19
	image 18 of 19
	image 19 of 19

