
 1

WP #2004-2

Creating an HVE ™ Vehicle Geometry from Orthographic Diagrams

James P. Sneddon
Baker Sneddon Consulting

Copyright 2004 Engineering Dynamics Corporation

Abstract

The vehicle geometry file provides a graphic
visualization of a vehicle and damage profile in
HVE™ simulations. Many users prefer specific
vehicle geometries over generic for use in video
exhibits. An increased need for specific vehicle
geometries occurred with the release of the
DYMESH® option in SIMON®. Unlike
EDSMAC4™, the vehicle geometry is an integral
part of the collision simulation in DYMESH.

Currently, there are over 150 vehicle geometry
files included with the HVE system software,
and additional models are added with each
release. Most users will periodically require a
vehicle that is not included in the database. If a
generic vehicle geometry will not suffice, the
user can order the vehicle from EDC, purchase
the vehicle geometry from a third party, or build
the vehicle geometry file using 3D modeling
software.

Building a vehicle geometry requires three
dimensional point data. This data is best
acquired by using a digitizing arm, survey
instrument or photogrammetry. However, some

vehicle configurations can be built from
orthographic diagrams. This whitepaper will
provide an introduction to this method.

Introduction

Building vehicle geometries is a process of
varying difficulty. Vehicles with planar or flat
surfaces, or with curved surfaces of uniform
radii can easily be built. A semi-trailer is a
prime example of this type of vehicle. Often
these types of vehicles can be built from a few
measurements, or diagrams. Figure 1 depicts a
trailer built from field measurements. The van
body was created very quickly, with the greatest
amount of time spent on the underbody details.

The free form surfaces common to passenger
vehicles greatly increase the difficulty of
modeling a vehicle. Figure 2 is a geometry file
of a Ford Mustang Convertible downloaded
from an online 3D model exchange site.

The downloaded file was modified and
converted to the .h3d format, and imported into

Figure 1. The planar surfaces of this trailer make it
one of the easiest vehicles to build.

Figure 2. The intricate details of the free form
surfaces of this Mustang are nearly impossible to
build from an orthographic diagram of the vehicle.

 2

the vehicle editor. The subtle contours of the
hood and fenders and intricate details of the air
scoop are nearly impossible to build from the
typical top, front, back and side orthographic
views. These vehicles are best modeled from
digitized point data.

Between these extremes there are many vehicles
that can be modeled from orthographic diagrams
with reasonable effort. Examples of these
vehicle types include buses, construction
equipment, panel trucks and trailers. This
whitepaper will outline the procedure used to
build the vehicle geometry file for the TMC
RTS 4400 Transit Bus depicted in Figure 3.

The geometry file was built using Rhinoceros®
(a.k.a. Rhino); a three dimensional NURBS
modeling program. Rhino’s NURBS (Non-
Uniform Rational B-Spline) geometry provides
excellent flexibility in creating and editing free-
form shapes and surfaces.

Figure 3. This Chicago Transit Authority TMC RTS
4400 Transit Bus was built from the orthographic
diagram in Figure 4.

Orthographic Diagrams

Orthographic diagrams of the vehicle can often
be obtained from the manufacturer or dealer.
The owner of a fleet vehicle, such as the transit
bus, may have these diagrams on file. The
diagram in Figure 4 was used to build the bus
geometry.

Figure 4. The TMC RTX 4400 Transit Bus was built from these five orthographic views.

 3

A minimum of four views (top, front, rear and
side) of the vehicle are required. Since the sides
of the transit bus are not identical, a fifth view is
required.

The diagram was scanned and saved as a bitmap.
Using the BackgroundBitmap command, the
image was imported as a background in Rhino.

The size was specified such that the image was
approximately to scale.

The background image was used to create the
curves from which surfaces were constructed.
For this vehicle, all curves were constructed in
the top view, and rotated as needed.
Alternatively, each view can be scanned and
placed separately in the corresponding viewport.

Figure 5. The background image placed in the top viewport.

Symmetry

Most vehicles are bilaterally symmetrical
relative to the xz plane. The transit bus is
symmetrical with the exception of the curb side
doors, and driver’s side window.

Symmetry reduces the number of points required
to build the geometry. Points and curves used to
build the body are mirrored about the centerline.
Care must be used to ensure that curved surfaces

are not only symmetrical, but tangent across the
centerline.

A centerline was established in the end and top
views of the bus. In the front view, a polyline
was drawn along the roof of the bus, ending at
the centerline. Using the Mirror command, the
polyline was mirrored about the centerline. An
interpolated curve was then drawn through the
vertices of the polyline. This will ensure that the
roof line is both tangent and symmetrical about
the centerline (Figure 6).

 4

Wire Frame

Curves constructed from the orthographic views
are used to build a wire frame, or skeleton of the
vehicle. From this wire frame, NURBS surfaces
can be constructed to form the vehicle exterior.

In the front view, a curve along the right side
was built as previously described. Use as few
vertices or points as needed to match the curve.
If too many vertices are used, the curve will
appear irregular. If this occurs, the curve can be
redrawn with fewer vertices, or large variations
in curvature can be removed with the Fair
command.

The small radius curve between the roof and
sides was not built with an interpolated curve.
Instead, the right side was mirrored about the

centerline, and the Fillet command was used to
build the connecting curves. This will ensure
that the curve is tangent to the top and sides.

The perimeter curves were built in the top view,
ensuring that symmetry and tangency were
maintained about the centerline as before. The
side profile view was created in the right
orthographic view. Fillets were used to connect
the roof line to the front and rear curves in the
side profile view.

The height of the side profile and the width of
the perimeter must match the profile curve
drawn in the front view. Figure 6 shows the
front, right side and top profile curves in red.
The centerline in the top and front views is in
blue. The bumper curves were not included as
they will be added later.

Figure 6. The curves in red establish the front, side and top profile of the transit bus. The blue centerline in the top
and front views is used to maintain symmetry about the xz plane.

Perimeter Curve

End Profile Curve

 5

The end and side profile curves were rotated so
that they are properly oriented to the perimeter
curve in the top view. The end profile curve was
moved so that the widest point was aligned
vertically with the perimeter curve. It was
positioned in the center longitudinally. Then the
side profile curve was moved so that it was
aligned with both the perimeter curve and end
profile curve. The intersection points of all
curves must be coincident. Figure 7 shows these
curves properly rotated and aligned.

The perimeter curve tapers at each end of the
bus. A copy of the front profile curve was
placed at the start of the tapered section at each
end. The perimeter curve was copied to the
bottom of the profile curves, and a second copy
placed approximately midway up the side of the
bus. These curves were adjusted so that the
intersection points with the end and side profile
curves were coincident. The completed wire
frame is shown in Figure 8.

Figure 7. The front and right side profile curves have been rotated and moved relative to the top perimeter curve.
The points of intersection must be coincident.

End Profile Curve

Perimeter Curve

Side Profile Curve

 6

Figure 8. Copies of the end profile and perimeter curves are added to complete the wire frame. The intersection
points between the curves must be coincident.

Surfaces

Numerous surface tools are available in
Rhinoceros, which enables the same surface to
be constructed by several means. The methods
described herein were used by the author to
build the transit bus. They were selected for
accuracy and ease of use, but are not the sole
means by which a vehicle geometry file can be
created. In some instances, an identical surface
can be built with a different surface tool.

NURBS surfaces were constructed from the
completed wire frame to form the bus body.
Specific details, such as windows and doors,
were split from the initial surfaces. The final
product is a polygon mesh created from the
joined NURBS surfaces.

The bus body is built in separate sections and
joined later. The first section is constructed
from the end profile curves. The Join command
is used to join the individual entities together in
each of the end profile curves.

A NURBS surface is constructed with the Loft
command. The surface is lofted through the
three end profile curves. This surface, shown in
Figure 9, forms the sides and roof of the bus.
The bottom will be built separately.

The ends of the bus were built with a curve
network. The perimeter and side profile curves
were joined. Since curves in the same direction
of a curve network cannot cross, the end profile
curve must be split at the intersection with the
side profile curve. The ends are built separately
from each curve network with the NetworkSrf
command. The curve network used to build the
front end is shown in Figure 10, and the
constructed surface in Figure 11. The rear of the
bus is constructed in the same manner.

 7

Figure 9. The blue surface was lofted through the red end profile curves. This forms the sides and roof of the bus.

Figure 10. The front end of the bus was constructed
from the network of curves illustrated here. The end
profile curve must be split at the intersection point
with the side profile curve.

Figure 11. The NetworkSrf command was used to
construct the surface forming the front of the bus
from the curve network shown in Figure 10.

End Profile Curve

End Profile Curve

End Profile Curve

Split curve at
intersection

 8

Surface Normals

Much like HVE environment files, surface
normals apply to the vehicle geometry too. It is
important to properly orient the surface normals.
Particularly with DYMESH events where
reversed normals may result in ignored
interaction between colliding surfaces. The

surface normals of a vehicle geometry must be
pointed toward the outside.

After creating the exterior surfaces, the Dir
command was used to check the surface normal
orientation. Reversed normals were corrected
with the FlipNormal option in the Dir command.
Figure 12 shows the surface normal display.

Figure 12. The Dir command can be used to check for proper surface normal orientation. The surface normal
should point toward the outside of the vehicle.

Details

Vehicle details can be split from the initial
surfaces forming the exterior body. The NURBS
geometry permits a surface to be split using
curves or surfaces as cutting edges. Using the

orthographic diagrams, curves were drawn along
the edges of the windows, doors, wheel openings
and engine grills. Additional lines were drawn
to create the color scheme used by the Chicago
Transit Authority. Figure 13 shows the lines
and curves used to split the details from the left
and right sides of the bus.

 9

Figure 13. The windows, doors and wheel openings can be trimmed from the exterior shell using lines and curves
drawn from the orthographic views.

These lines and curves were rotated and aligned
to the exterior surfaces. Using the Split
command, each detail was split from the exterior
surfaces. Details, such as the doors, are present
on the right side only. To prevent the split
command from splitting both sides, a surface

was built from the detail with the Extrude
command. The extruded surface passes through
the right side only. Using it as a cutting edge, it
splits only the side through which the extruded
surface passes. Figure 14 shows these details
split from the exterior surfaces.

Figure 14. The vehicle details were split from the initial surfaces. The color attributes were changed to better
visualize the split surfaces.

To give the model more depth, the windows
were moved inboard approximately one inch.
The gap between the body and window was
filled with the EdgeSrf command. The same
process was performed on the engine grill. The
wheel openings were split twice, and flared

outboard. The opening for the rear bus door was
deleted, and replaced with a vertical planar
surface. The gap filled as previous. Figure 15
shows a close up of the rear door and windows.

 10

Figure 15. The windows were moved inboard to give the model depth. The rear door surface was replaced with a
vertical planar surface. The EdgeSrf command was used to fill the gaps between these details and the exterior
surfaces.

The bumpers were constructed from a network
of curves. Profile and perimeter curves were
created from the orthographic diagrams. These
curves were copied to complete a wire frame of
the bumper as in Figure 16.

The bumper surface was constructed using the
NetworkSrf command (Figure 17). To prevent
overlapping surfaces, the Trim command was
used to remove the surfaces behind the bumper
(Figure 18).

Figure 16. A wire frame of the front bumper was drawn from the orthographic diagrams. This forms a curve
network from which the bumper surface was constructed.

 11

Figure 17. The bumper surface was created with the NetworkSrf command from the curve network in Figure 16.

Figure 18. The surfaces behind the bumper were trimmed to prevent overlapping surfaces.

 12

The bottom of the bus is planar, with the
exception of the wheel wells. An initial surface
was built with the Plane command in the xy
plane. The edges of the surface extended
beyond the perimeter of the body, and were
trimmed by the perimeter curve along the
bottom of the wire frame. The surface was
moved to the proper elevation.

The edges of the wheel openings in the sides of
the body were used to create the wheel wells. A
surface was built between the wheel openings on

opposite sides of the bus with the EdgeSrf
command. The back wall of the wheel well was
built with a vertical surface parallel to the xz
plane. This surface was offset from the
centerline approximately two feet to provide
sufficient room to house the tires once the
geometry is imported into HVE.

Finally, the bottom and interior wall surfaces
were trimmed by the extended surfaces. The
final surface is shown in Figure 19.

Figure 19. The bottom of the bus was formed by a trimmed planar surface. The wheel wells were built from the
edges of the wheel openings in the sides of the bus, and trimmed by the vertical surfaces forming the back wall. All
surfaces were trimmed such that no surface extended beyond the adjacent surface.

Meshing

The NURBS surfaces built in Rhino must be
meshed before exporting to HVE. The seams
between contiguous surfaces must be watertight.
Gaps in the mesh can result in unexpected
damage profiles in collision simulation models.
In DYMESH events, these gaps may lead to the
collision routine ignoring interaction with the
detached surface.

By joining the NURBS surfaces before meshing
these gaps can be avoided. The Join command

was used to join the individual surfaces into one
polysurface. The ShowEdges command was
used to check for naked edges in the model. A
naked edge will indicate a gap between surfaces.
Figure 20 shows naked edges appearing along
the roof and bumper.

Since the bus is a solid, there should be no naked
edges within the model. The JoinEdge
command can be used to close the gaps in
adjacent surfaces. It overrides the tolerance
which prevented the successful joining with the
Join command.

 13

Figure 20. The ShowEdge command displays naked edges in the selected polysurface. The magenta lines indicate
gaps in the model. The JoinEdge command was used to close these gaps so that the mesh is watertight.

The Mesh command creates a polygon mesh
from the NURBS surfaces based upon user
entered parameters. The vertices of contiguous
surfaces will be coincident.

The mesh density is controlled by the Polygon
Mesh Options dialog, and is a compromise
between the accuracy of the model, and the
ability of HVE and the user’s system to manage
the geometry file size. Decreasing the maximum
angle in the detailed options dialog will increase
the polygon count and the accuracy of curved
surfaces. The maximum edge length can be used
in lieu of the tessellation option in HVE. Figure
21 shows the Polygon Mesh Detailed Options
dialog with typical settings.

Figure 21. Mesh density is controlled by the
Polygon Mesh Options dialog.

 14

Figure 22. The polygon mesh was created from the joined polysurface with the Mesh Command.

The polygon mesh is a separate entity from the
NURBS polysurface used to create it. Figure 22
shows the polygon mesh of the transit bus. At
the time of creation, the mesh is one object. The
Explode command was used to separate the

mesh into individual meshes corresponding to
the joined surfaces. The exploded meshes were
moved to individual layers. The attributes were
set by layer to match the color scheme of the bus
(Figure 23).

Figure 23. The exploded meshes were moved to individual layers and the attributes set to match the bus’s color
scheme.

 15

Rhino’s material properties control how the
mesh will appear when rendered. The basic
color setting controls the color of the mesh, and
corresponds to the diffused color setting in
HVE. The gloss finish (reflective finish in
Rhino, Version 2.x) corresponds to the ambient
color setting in HVE. This should be set to
black for the most desirable results.

In Rhinoceros, Version 3.0, the ambient color of
a mesh may not translate correctly when
imported into HVE. The surface may appear
“washed out.” The ambient color can be edited
in the 3D Editor in HVE, or with a text editor
such as Notepad. This does not occur with
version 2.x.

The transparency setting for the windows or
translucent surfaces can be set in this dialog too.
Figure 24 shows the material properties for the
window layer of the transit bus.

Figure 24. The material properties control the
appearance of the polygon mesh. The Basic color
setting controls the color of the rendered mesh. The
Gloss finish setting should be set to black. The
Transparency setting can be used for glass or
translucent surfaces.

Export

The vehicle geometry was prepared for export.
Because the background bitmap was placed
approximately to scale, adjustments may be
required. The Distance command was used to
compare the length, width, height and wheelbase

to the dimensions listed on the diagrams.
Adjustments to these dimensions were made
with the Scale command. If necessary,
Rhinoceros can scale objects in one or two
dimensions only using the Scale1D and Scale2D
commands respectively.

The origin of the vehicle coordinate system in
HVE is located at the vehicle’s center of mass.
Using dimensional and inertial data, the origin
of the geometry file was relocated. The
geometry file must be rotated about the x axis to
correspond to the SAE coordinate system used
by HVE. If the drawing units were in inches, no
scaling is required.

The preferred file format for importing into
HVE is VRML (.wrl). This format retains the
material properties and surface normal
orientation of the polygon mesh. Rhinoceros
exports this file type. Only the polygon meshes
are exported. Using the Export command, the
meshes were exported as a VRML (.wrl) file.
The VRML file is ready for import into HVE.

Conclusion

The methods presented herein provide a means
of building geometry files for select vehicle
types. These vehicle types are not predominate
in the Engineering Dynamics Vehicle Database,
or readily available from other sources. This
provides the user with an option to digitizing a
vehicle. This methodology can be used to build
vehicle components that can be added to existing
vehicle geometries (Figure 25).

Figure 25. This ambulance was created by
modifying an existing vehicle geometry.

 16

References

HVE Physics Manual, Engineering Dynamics
Corporation, Beaverton, OR, 2004.

Rhinoceros Users Guide, Version 3.0, Robert
McNeel & Associates, 2003.

Sneddon, James P., Introduction to Creating
HVE Environments with Rhinoceros, 2002,
WP2002-2, Engineering Dynamics Corporation,
Beaverton, OR.

Cheng, Ron K.C., Inside Rhinoceros, 2002,
Onword Press, Albany, NY.

HVE Operations Manual, Engineering
Dynamics Corporation, Beaverton, OR, 2000.

Trademarks

HVE and EDSMAC4 are trademarks of
Engineering Dynamics Corporation.

DYMESH (US Patent Number 6,195,625) and
SIMON are registered trademarks of
Engineering Dynamics Corporation.

Rhinoceros and Rhino are registered trademarks
of Robert McNeel & Associates.

