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VALIDATION OF ACCIDENT RECONSTRUCTION FORMULAS USING HVE 
 

Scott B. Anderson, Ph.D. 
Anderson-Lee Applied Science 

 

ABSTRACT 
 
Starting with the classic speed-to-stop 
formula, two formulas used in accident 
reconstruction are examined using HVE 
to validate them and their domain of 
applicability.  These include formulas for 
spinning vehicles and sliding vehicles. 
 A discussion of each formula is 
presented and along with the results of 
the relevant HVE validation simulations. 
 
 
OVERVIEW  
 
Accident reconstruction analysis often 
uses basic formulas to calculate various 
quantities of interest, particularly the 
initial speeds of vehicles.  The 
derivations of these formulas proceed 
from simplified models of vehicle motion 
that ignore various complicating factors. 
 It is of interest to examine the accuracy 
of these formulas and the limits of their 
use but it is impractical to conduct real 
experiments with physical vehicles.  
With the introduction of the HVE SIMON 
physics module, we can now conduct 
virtual experiments to determine the 
proper domain of application for these 
formulas.  In this paper, we study two 
widely used formulas using SIMON and 
EDSMAC4 simulation runs and present 
some observations and conclusions. 
 
 
 

SKID TO STOP 
 
The "skid to stop" formula is often used 
to compute a likely initial speed for a 
vehicle, given the distance the vehicle 
slid to a stop on a roadway.  It is a 
consequence of the work-energy 
theorem of physics, which states that 
the energy lost by a sliding object must 
equal the work done.  Using the formula 
for the kinetic energy of a vehicle and 
setting it equal to the work done against 
the force of friction yields the formula: 
 

! 

v = 2" µ" g" S  
 
In this formula, v is the speed in 
feet/second, 

! 

µ  is the coefficient of 
sliding friction, g is the acceleration of 
gravity (approximately 32.2 
feet/second/second) and S is the 
distance slid in feet. 
 
This formula can be applied when the 
model of the vehicle motion is that of a 
"hockey puck".  The derivation of the 
formula ignores any jounce and 
rebound, any "weight-shifting", and any 
other complication of vehicle 
construction and motion.  The question 
then becomes how accurate is this 
formula?  Can it still be used 
productively in the analysis of vehicle 
motion? 
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Vehicles 

! 

µpeak  

! 

µsliding  

! 

Speak  ABS 

2003 Ford 1.100 0.850 0.160 Yes 

1979 Ford 0.843 0.600 0.102 No 

 

To investigate this question, we ran 
several simulations using both the 
SIMON physics module and the 
EDSMAC4 physics module.  We used 
an unmodified 2003 Ford Crown Victoria 
and an unmodified 1979 Ford Crown 
Victoria from the standard HVE vehicle 
database.  An interesting aspect of 
these vehicles is that the 2003 Ford 
uses an anti-lock braking (ABS) model.  
For this vehicle, we derived an average 
coefficient of friction of 0.905, which was 
then used to compute an initial speed 
from the skid to stop formula.  The 
various friction properties of the vehicle 
tires are presented in Table 1 and the 
results simulations are presented in 
Table 2.  It should be noted that the 
EDSMAC4 physics module only uses 
the coefficient of sliding friction at a 
specific load.  In contrast, the SIMON 
physics module provides a table of 
coefficient of friction values based on 
load and speed (up to 9 values for a 
combination of 3 loads and 3 speeds). 
 

Table 1 
 
 
 
 
 
 
 
For Table 2, four simulation sets 
(SIMON/EDSMAC4) were run at an 
initial speed of 15, 30, 45, and 60 mph 
with the initial speed as the independent 
variable.  The integration time step for 
the runs was 0.001 seconds and the 
output time interval was 0.05 seconds.  
After the runs were completed, the 
distance covered during very hard 
braking was computed. In addition, the 
distance for any displayed skid marks 

was measured.  The goal of the analysis 
was to determine how accurate a 
prediction of the initial speed could be if 
an investigator knew (via some yet to be 
described technique) the distance 
covered by braking and in addition, how 
accurate a prediction of the initial speed 
could be if just the length of the skid 
marks was known. 
 
All vehicle braking was initiated 1.0 
seconds into the simulation run and 
reached full braking at 1.1 seconds into 
the run.  This generally means that for 
the SIMON runs, the vehicles will have 
slowed slightly from their initial speeds.  
The actual initial speed when braking 
was initiated is displayed to the right of 
the "/" in the predicted speed row.  Skid 
marks were not left for some runs and 
for those runs, the corresponding table 
cell values were left blank. 
 
Examining the results of the SIMON 
runs, we see that even with the 
complications modeled by the SIMON 
physics module, the error is less than 
one percent.  We also see that for the 
1979 Ford, which does not have ABS 
activated, the results are generally in 
good agreement with the EDSMAC4 
results. 
 
We derived an effective coefficient of 
friction for the 2003 Ford by computing 
the effective coefficients of friction at the 
four analyzed speeds and then 
averaging them.  For example, the 15 
mph run had an effective coefficient of 
friction of 0.906 and the 60 mph run had 
an effective coefficient of friction of 
0.901.   Adding the four effective 
coefficients of frictions and then 
averaging them resulted in an average 
coefficent of friction of 0.905. 
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Distance/Speed 2003 SIMON 2003 EDSMAC4 1979 SIMON 1979 EDSMAC4 

15 MPH Distance 7 9 11 13 

Predicted Speed 13.77/13.78 15.13 14.06/13.93 15.28 

% Error 0.07 0.87 0.93 1.87 

15 MPH Skid  8  12 

Predicted Speed  14.27  14.68 

% Error  4.87  2.13 

30 MPH Distance 28 35 47 50 

Predicted Speed 27.54/27.74 29.84 29.06/29.09 29.97 

% Error 0.72 0.53 0.10 0.10 

30 MPH Skid  32 35 47 

Predicted Speed  28.54 25.07/29.09 29.06 

% Error  4.87 13.82 3.13 

45 MPH Distance 71 80 109 113 

Predicted Speed 43.86/43.60 45.12 44.25/44.19 45.05 

% Error 0.60 0.27 0.14 0.11 

45 MPH Skid  77 96 110 

Predicted Speed  44.27 41.53/44.19 44.45 

% Error  1.62 6.02 1.22 

60 MPH Distance 128 141 195 200 

Predicted Speed 58.89/58.77 59.90 59.18/58.91 59.94 

% Error 0.20 0.17 0.46 0.10 

60 MPH Skid  138 178 197 

Predicted Speed  59.25 56.45/58.91 59.49 

% Error  1.25 4.16 0.85 

 

Table 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consequently, the results for this vehicle 
can be interpreted as demonstrating that 
the variance about the average is small. 
 The central issue then, for using the 
skid to stop formula in ABS situations, is 
to determine the effective coefficient of 
friction from ABS and tire parameters.  
We do not attempt to derive such an 

effective coefficient in this paper but 
note that the value of approximately 0.9 
is proportionally approximately 20% of 
the peak value of the coefficient of 
friction plus approximately 80% of the 
sliding value of the coefficient of friction 
as given in Table 1. 
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ROTATING VEHICLES 
 
The "skid to stop" formula cannot be 
used unmodified when the vehicle is 
rotating.  However, a new formula can 
be derived based on the "bicycle model" 
of vehicle motion.  In this model, the 
vehicle is reduced to two wheels, free to 
rotate, that are aligned and connected 
by rigid strut.  For our purposes, the 
wheels are assumed to slide with friction 
for any slip angle of the wheel and slide 
without friction when the wheels are 
aligned perfectly with the velocity vector 
of the vehicle.  There are three 
qualitative dynamical regimes for the 
vehicle. 
 
This model implies that when the vehicle 
is at first, spinning very fast, it will slide 
without friction down the roadway.  
However, the friction of the road will 
exert a torque on the vehicle, slowing its 
rotation.  As the angular velocity of the 
vehicle decreases, it will reach a point 
where the tangent speed of a wheel will 
become less than the center of mass 
speed of the vehicle.  At this point, the 
dynamics of the vehicle will shift such 
that the vehicle will no longer 
experience a torque but will now slide 
with friction and lose speed. 
 
As the vehicle slows down, there will 
come a point when torque will be 
reintroduced when the tangent speed of 
the wheels match the center of mass 
speed.  At some point the angular 
velocity will disappear and the vehicle 
will enter the third dynamical regime 
where it simply rolls without friction at 
some final speed and in some final 
direction. 
 
To illustrate this we present Figures 1 

and 2.  Figure 1 displays the angular 
velocities and total speed of the Ford 
Crown Victorias as computed by the 
EDSMAC4 physics module. 
 

Figure 1 - EDSMAC4 

 

In the above graphs, the darker line 
represents the results for the 1979 Ford, 
while the lighter colored line represents 
the results for the 2003 Ford.  We note 
that we see the expected behavior.  
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There is no torque exerted on the 
vehicles most of the time.  As the slip 
angle approaches zero, a torque is 
introduced for a short period of time and 
the angular velocity drops.  As one can 
see in the graph of the total speed for 
the vehicles on the right, during this 
period there is no frictional force exerted 
on the vehicles.  After this short time 
interval passes, the slip angle is large 
enough for the condition of zero torque 
to start again. 
 

Figure 2 - SIMON 

 

Figure 2 in turn, displays the angular 
velocity of the Ford Crown Victorias as 
computed by the SIMON physics 
module. 
 
We see that the SIMON physics module 
introduces torques at each moment in 
time, but there are periods where the 
torque is small.  We also note that for 
the 2003 Ford, there is no "fourth" 
plateau of small torque; rather, after the 
third plateau, the torque drops 
precipitously to zero.  This leads to 
significant qualitative differences in 
vehicle motion between EDSMAC4 and 
SIMON. 
 
In this second dynamical regime of zero 
torque, the vehicle experiences a 
frictional force oriented perpendicularly 
to the wheels and as the vehicle rotates, 
so does this frictional force.  As the 
vehicle slides down the road, the 
average component of this force along 
the direction of the center of mass 
velocity ("down the road") is a quantity 
of interest.  This average component 
can be used to derive an analog of the 
classic skid to stop formula. 
 
The complete derivation of the new 
formula is presented in Appendix A and 
yields a form that is still essentially the 
same as the formula for skidding 
 

! 

v = 2" µeff " g" S + vF
2  

 
In the equation above, 

! 

vF  is the final 
speed when the angular velocity goes to 
0.  However, the coefficient of friction is 
replaced by an effective coefficient of 
friction given by 
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! 

µeff =
2
"
# µ# 1$

2vT
vCM( )  

 
In this expression for the effective 
coefficient of friction, 

! 

Tv  is the tangential 
speed of the wheels in feet/second 
(approximately given by the angular 
velocity times half the wheel base) and 

! 

CMv  is the speed of the center of mass. 
 Notice that the formula is speed 
dependent and reduces to zero when 
the tangential speed is equal to the 
center of mass speed.  That is the 
approximate demarcation between the 
two dynamical regimes.  Generally we 
assume that the tangential speed is 
slow compared to the center of mass 
speed and so use the approximate 
expression: 
 

! 

µeff =
2
"
# µ  

 
Again we are interested in how accurate 
is this formula and does it hold up when 
the complications of actual vehicle 
motion are included. 
 
As we did before, we ran several 
simulations using both the SIMON 
physics module and the EDSMAC4 
physics module.  The results are 
presented in Table 3. 
 
For Table 3, four simulations sets 
(SIMON/EDSMAC4) were run at an 
initial speed of 45 mph and initial 
angular velocities of 360, 270, 180, and 
90 degrees per second with the initial 
angular velocity as the independent 
variable.  The integration time step for 
the runs was 0.001 seconds and the  
output time interval was 0.05 seconds.  

After the runs were completed, the 
distance travelled by the vehicles was 
measured.  Because the formula is only 
valid when the vehicles are rotating, this 
distance was the distance travelled up to 
the point of essentially zero angular 
velocity.  The goal of the analysis was to 
determine how accurate a prediction of 
the initial speed could be if an 
investigator knew the final speed at the 
point of zero angular velocity and the 
distance travelled while rotating. 
 
For Table 3, the times are in seconds, 
the speeds are in mph, the distances 
are in feet, and the azimuths are in 
degrees. 
 
We can see from the results for the 
simulation runs using the SIMON 
physics module, the use of the effective 
friction formula works well for the 2003 
Crown Victoria but leads to an under 
prediction for the speed of the 1979 
Crown Victoria.  A qualitative difference 
can be seen between the 2003 Ford and 
the 1979 Ford.  The final speeds for the 
2003 Ford are significant in value and 
are larger than 15 mph.  On the other 
hand, the final speeds for the 1979 Ford 
are generally smaller and except for one 
outlier, are less than 8 mph.  This 
means that the 1979 Ford had a larger 
change in speed over the sliding interval 
than the 2003 Ford.  It appears that 
beyond the speed dependency in the 
original formula for the effective 
coefficient of friction, there is another 
dependency that must be accounted for 
that would increase the effective 
coefficient of friction.  The source of this 
additional friction can be seen in this 
screenshot of the 360 º / second SIMON 
run at T - 0.55 seconds. 
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Results 2003 SIMON 2003 EDSMAC4 1979 SIMON 1979 EDSMAC4 

360 º / second     

Time Interval 2.75 3.95 3.75 4.60 

Final Speed 15.77 3.54 7.53 12.90 

Distance 107.17 137.15 135.97 186.38 

Final Azimuth 570.34 705.37 722.28 907.59 

Predicted Speed 44.55 47.27 40.14 47.93 

270 º / second     

Time Interval 2.15 3.85 3.65 5.10 

Final Speed 19.75 3.96 5.51 5.89 

Distance 96.79 133.19 130.11 185.40 

Final Azimuth 378.54 535.25 537.86 712.70 

Predicted Speed 44.25 46.62 38.96 46.42 

180 º / second     

Time Interval 1.50 3.35 3.15 3.55 

Final Speed 27.27 7.58 11.20 22.00 

Distance 77.38 127.08 128.80 162.78 

Final Azimuth 187.91 353.26 362.21 391.30 

Predicted Speed 44.69 46.00 39.98 48.43 

90 º / second     

Time Interval 1.75 2.90 3.55 2.75 

Final Speed 32.18 12.40 3.78 24.22 

Distance 96.74 122.91 126.00 136.92 

Final Azimuth 59.97 178.80 134.50 184.76 

Predicted Speed 51.02 46.31 38.15 46.39 

 

 
 

Table 3 
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It is easily seen that at this moment in 
time, there are significant non-zero 
values for 

! 

Fx , the forces on the tires 
aligned with the wheel.  These forces do 
not exist in our bicycle model and do not 
exist in EDSMAC4.  In EDSMAC4, the 
forward forces 

! 

Fx  are always zero for all 
tires.  We see that in SIMON, these 
forces are sizeable.  For example, the 
forward force for the left tire on the rear 
axle is 659 lbs along with a lateral force 
of 218 lbs.  With a normal force of 1015 
lbs, the effective coefficient of friction is 
approximately 0.68, which is larger than 
the nominal 0.6. 
 
These forces ultimately arise from the 
fact that the wheel has a non-zero 
moment of inertia.  This means that the 
wheel will not instantly spin up as 
longitudinal forces are applied and 
consequently, there will be a longitudinal 
force of friction, 

! 

Fx , on the tire of the 
wheel.  This frictional force will be an 
important factor in the motion of a 
vehicle if the time scale of the vehicle's 
rotation is comparable to the time scale 
of the wheel's rotation.  A basic SIMON 
run shows that the time for a wheel to 
spin down from 45 mph is approximately 
0.25 seconds under a load of 
approximately 900 pounds.  For a 
vehicle rotating at 360 degrees per 
second, the time for a wheel to sweep 
through a quadrant ( 

! 

0 < " < # 2 ) is of 
course, also 0.25 seconds.  The fact 
that these two times are comparable 
means that the assumption of zero spin 
inertia for the wheels is unwarranted.   
 
Consequently, SIMON demonstrates 
that the simple bicycle model does not 
take into account important additional 
sources of friction due to wheel moment 

of inertia.  These can act over time to 
decelerate the vehicle beyond that 
predicted by our model and so the use 
of the effective coefficient of friction 
formula must be tempered by these 
concerns. 
 
 
CONCLUSION 
 
After examining the skid to stop formula 
and the effective coefficient of friction 
formula, we find that both formulas are 
accurate with certain qualifications.  The 
skid to stop formula must use an 
effective coefficient of friction to be 
accurate in the case of a vehicle using 
ABS braking.  This is not unexpected.  
This effective coefficient of friction has a 
higher value than the coefficient of 
sliding friction but is not as high as the 
coefficient of peak friction.  In the case 
we examined, the effective coefficient 
was approximately 6% higher than the 
value for sliding friction. 
 
Rotating vehicles will decelerate more 
slowly than the nominal value of sliding 
friction would predict.  The nominal 
coefficient of friction must be replaced 
with an effective coefficient of friction 
that is approximately 

! 

2 /"  that of the 
original sliding friction.  However our 
example indicates that the factor must 
be increased by approximately 25% to 
40% when the rotating vehicle slides for 
a longer time and distance, resulting in a 
lower final speed.  This is due to 
additional sources of friction, which are 
not taken into account by the bicycle 
model of vehicle motion. 
 
We also find that the effective friction 
formula is more accurate when the initial 
angular velocity is higher than 90 
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degrees per second.  The vehicle 
should rotate beyond 90 degrees before 
having the angular velocity drop to zero. 
 Put simply, the more rotations the 
better. 
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APPENDIX A 
 
In this appendix, a derivation of the 
formula for the effective friction of a 
rotating vehicle is presented.  Using the 
bicycle model, we first discuss the 
motion of a rotating vehicle in a general 
fashion. 
 
Assume a bicycle traveling in a direction 
parallel to the Y axis with a speed 

! 

V  
and rotating about the center of mass 
with an angular velocity 

! 

" .  Further 
assume that the center of mass is at the 
geometric center of the bicycle so that 
the two wheels of the bicycle are 
equidistant from the center of mass with 
a distance of   

! 

l  feet.  We define a 
tangential speed as 

! 

VT  =   

! 

"# l . 
 
Using a coordinate system located at 
the center of mass, at any one moment, 
one wheel will be located at a positive Y 
coordinate and the other will be located 
at an equal and opposite negative Y 
coordinate.  We will call the positive Y 
coordinate wheel the "leading" wheel 
and the negative Y coordinate wheel, 
the "trailing" wheel. 
 
We describe the angular state of the 
bicycle by using an angle 

! 

" , which is the 
angle of the rigid strut with respect to 
the Y axis.  This is the longitudinal axis 
of the bicycle.  Because the wheels in 
the bicycle model are inline with the 
strut, this angle is also the angle the 
wheels make with respect to the Y axis. 
 
Examining the situation when the angle 

! 

"  is between 0 and 90 degrees, we note 
that the total velocity vector of the 
leading wheel is the vector sum of the 
center of mass velocity 

! 

V  and the 
velocity of the wheel relative to the 

center of mass, 

! 

VT .  The frictional force 
acting on the tire of the wheel, will 
initially act in a direction opposite to the 
direction of the total velocity vector.  
However, because the bicycle model 
assumes that wheels have no moment 
of inertia, the leading wheel will 
instantaneously spin up in such a 
manner that the frictional force on the 
wheel will only act perpendicular to the 
wheel, either to the right or left of the 
direction defined by the longitudinal 
axis.  Consequently the frictional force 
acting on the leading wheel, will only act 
in a transverse direction, either positive 
or negative. 
 
The sign of the direction of this force is 
given by the sign of the expression 
 

! 

V " sin(#) $VT  
 
Note that for the trailing wheel, the 
analogous expression adds the two 
quantities together rather than subtracts 
them, and consequently is always 
positive. 
 
If the above expression is positive, then 
the bicycle is rotating slowly enough that 
a net drag force acts on the center of 
mass to slow the sliding vehicle down.  
In this dynamical regime, the net torque 
on the vehicle is zero. 
 
If on the other hand, the expression is 
negative, then the vehicle is rotating fast 
enough that there is a torque on the 
vehicle slowing its rotation.  In this other 
dynamical regime, the net force on the 
vehicle is zero and there is no slowing of  
the center of mass. 
 
The formula in question is applicable 
when the vehicle is rotating slowly and 
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the center of mass is slowing down.  For 
this regime, we wish to average the 
force along Y axis and divide it by the 
normal force to calculate an effective 
coefficient of friction.  For an angle 

! 

" , 
the component of the force along the Y 
axis is 

! 

µ" N " sin(#).  Consequently we 
wish to compute 
 
 

! 

µeff =

µ" N " sin(# )d#
#C

$
2

%

N " d#
0

$
2

%
  

 
 
where 

! 

"C  is the critical angle when the 
sign of the previously discussed 
expression changes.  That  angle is 
given by 
 

! 

"C = sin#1(VT
V
)  

 
The need for this critical angle in the 
integral is perhaps a subtle point.  Note 
that for a given angular velocity, no 
matter how small, there is always a 
value of 

! 

"  for which the product of 

! 

V " sin(#)  is less than 

! 

VT .  Below this 
value of theta, the previously discussed 
expression is negative and the vehicle is 
in the regime of zero force and non-zero 
torque.  Above this value, the vehicle is 
in the dynamical regime of non-zero 
force and zero torque.  Consequently 
the integral over the component of the 
force must be restricted to those values 
of theta.  As the vehicle rotates, it 
switches between regimes.  This 
"regime change" is clearly illustrated in 
the graphs of Figure 1. 
 

Evaluation of the integral is 
straightforward with the previously 
presented result of 
 

! 

µeff =
2
"
# µ# 1$

2VT
V( )  

 
It is easily seen that this formula has the 
correct limit as the tangential speed 

! 

VT  
approaches the center of mass speed 

! 

V .  At that point, there is always a 
torque and never a force on the center 
of mass.  Conversely, as the tangential 
speed approaches zero, the effective 
coefficient of friction approaches the 
value of 

! 

2" µ #  used in our study.  Of 
course, it should be noted that in case, it 
take an unphysical infinite amount of 
time to rotate 90 degrees. 


